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70-s: origin of

e string theory

e supersymmetric field theories in 2d, 4d, 10d
[Lars Brink’s talk]

but also of

e conformal field theory in 4d

[Polyakov, Ferrara et al, ... ]

e integrability of 2d sigma models

[Pohlmeyer, Luescher, Polyakov, Zamolodchikovs, ...]

and also of planar limit (N — oo, A = g2, N=fixed) ['t Hooft]
N = 4 SYM: remarkable relation to all of these ideas

Relation of SYM to string theory? known since 70’s / early 80’s:
[Scherk et al; Brink, Green, Schwarz]



On-shell scattering amplitudes of N = 4 SYM may be found from
o’ — 0 limit of superstring amplitudes in flat 10d space R'3 x T

But what about correlation functions of composite operators

= natural observables in a CFT ?

can one compute 2-point (spectrum of dimensions)

and 3-point (OPE coefficients) correlation functions of
conformal primary operators

[e.g. (TrF7, (z1).. TeF2 (25)) ]

from 10d flat-space string theory?!

not in an obvious or useful way (need an off-shell extension,...)

the idea that one can use string theory to solve N' = 4 SYM
as a CFT using string theory would sound wild in 70’s ...

... especially if this string theory is in curved space

and with finite tension ...



Maximally symmetric case of gauge-string duality:

[Maldacena, Polyakov, Klebanov, Witten,...]

planar A" = 4 super Yang-Mills < free AdS5 x S° superstring

closed string states on R x S <+ gauge-inv. SYM states on R x S?
marginal str. vertex ops on R? <+ conf. primary SYM ops on R*

Remarkably, correlators of AdSs x S° string vertex operators
— analogs of S-matrix elements in flat 10d space —

are (expected to be) dual to correlators of

conformal operators of planar A" = 4 SYM

In particular, relation of 2-point functions means that
spectrum of AdS5 x S° string energies

< spectrum of dimensions of SYM primary operators

Then the spectrum of A" = 4 SYM conformal dimensions A(\)
should be possible to describe by 2d AdS5 x S° superstring sigma



Integrability:
allows “in principle” to solve the problem of spectrum
enormous progress in the last 10 years
Some key inputs: [not a proper review!]
e SYM action + perturbation theory (A < 1)
o AdSs x S® GS superstring action + o/-expansion (v A > 1)
e classical integrability of AdS5 x S° GS action
[Bena, Polchinski, Roiban]
e perturbative integrability of SYM spectral problem:
(1-loop, 2-1oop, ...) dilatation operator = spin chain Hamiltonian
[Minahan, Zarembo; Beisert, Staudacher, ...]
e guidance from large-charge limits: BMN, GKP, FT

Assume that integrability extends to all orders on both sides

e construct interpolating Bethe ansatz guided by general
principles, symmetries and data from both weak+strong coupling
e check consistency of its predictions



I. Spectrum of “long” operators / “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)

e its final [Beisert-Eden-Staudacher] form found by intricate
superposition of data from A < 1 gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase, BMN),
symmetries (S-matrix), assumption of exact integrability

e consequences checked against available gauge and string data
Key example: cusp anomalous dimension — of Tr(® D> ®)
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II. Spectrum of “short” operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)

e reconstructed from ABA using solely methods/intuition

of 2-d integrable QFT, 1.e. inspired by string-theory side

e highly non-trivial construction — lack of 2-d Lorentz invariance
in standard BMN-vacuum-adapted l.c. gauge

e in few cases ABA “improved” by Luscher corrections is enough:
4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator

e complicated set of integral equations 1n need of simplification;
so far predictions extracted only numerically starting from

weak coupling and interpolating to larger A

e need more data to check predictions at A < 1 and A > 1, i.e.
against perturbative gauge-theory and string-theory data



Key example:

dimension A = 2 4 ~(\) of Konishi operator Tr(®,;®;)
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5-loop result first found using integrability [Banjok,Janik]
confirmed by more standard methods [Velizhanin; Eden et al 12]

Suppose one can sum up (convergent) A < 1 expansion
and then re-expand at A > 1

What one should expect to get for y(A > 1)?



Duality to string theory predicts the structure
of strong-coupling expansion:

leading term — near-flat-space expansion for fixed quant. numbers
[Gubser, Klebanov, Polyakov 98]

A =1\/2NV\+ ...

Subleading terms: o’ = —= expansion of 2d anom. dimensions

VA
of corresponding vertex operators [Roiban, AT 09] (V = 2)
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+ ...




Dimensions of “short” SYM operators
= energies of quantum string states

find leading o’ = % corrections to energy of

“lightest” massive string states on first massive string level
dual to operators in Konishi multiplet in SYM theory
— compare with predictions of TBA approach

important to check integrability-based approach
which involves subtle assumptions

directly against perturbative string sigma model

[similar checks were done, e.g., in standard O(n) models]



TBA results:
start at weak coupling for sl(2) Konishi descendant Tr(®D?*®)

use TBA to find A(\) numerically;
match to expected form of strong-coupling expansion to extract by
[Gromov, Kazakov, Vieira 09; Frolov 10, 12]

b1 ~ 1.988 , bo ~ —3.07

Compare to string theory:
One can find by, using semiclassical “short string” expansion
[Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

61:27 bQZCL—SC3
rational a 1s found [Gromov, Valatka 11] using also “2-loop”

coefficient in exact slope function (E? = h()\)S) [Basso 11]
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Remarkable agreement with TBA - check of quantum integrability
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Figure 1: Plot from Gromov, Kazakov, Vieira



Recent work on string side: [BGMRT 12]

e highest transcendentality terms in by,
are ~ (211 and have 1-loop origin, e.g.,

15
b3 = a1 + a2(3 + as(s , ag = —
rational a; receives contribution from 3 loops; as from
2-loops, etc.; by ~ (7 + ..., etc.

e supermultiplet structure: universality of coefficients in &
for string states with spins in different AdSs x S° directions:
dual operators from Konishi multiplet have same energy

(up to constant shift depending on position in the multiplet)

e states on leading Regge trajectory:
general structure of dependence of energy on
string tension v/, string level (spin) and S° orbital momentum .J



Some open questions:
e Analytic form of strong-coupling expansion from TBA?

e only (; coefficients in A(\) in both

weak and strong coupling expansions

or other transcendental constants may also appear?
(cf. cusp anomalous dimension)

2-1oop string computation may shed light on this ...

e Asymptotic form of strong coupling expansion:

interpretation of possible e~V corrections?

e Energies of other quantum states: similar behavior?



Konishi multiplet:
long multiplet related to singlet |0, 0, 0] (o ¢y by susy

[Jo — J3, J1 — J2, Jo 4 J3](s, 5R)
SL,R — %(Sl + 52)

50(6) (Jl, JQ, Jg) and 30(4) (Sl, Sg) labels
of SO(2,4) x SO(6) global symmetry
[ Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]

A=Ag+~v(\), Ap=2,2,3,.,10

same anomalous dimension « for all members

singlet eigen-state of anom. dim. matrix with lowest eigenvalue



Examples of gauge-theory operators in Konishi multiplet:

[0707_0](0,0):
TI'((I)Z(I)Z), 1= 1, 2, 3, AQ =2

[27 07 2](0,0):
Tr([®1, P2]?) in su(2) sector, Ag =4

[07 27 O](l,l):
Tr(®,D?*®,) in sl(2) sector, Ag =4



2 [07070](0,0)

5 | 0,0,15 1) +[1,0,0] 1 g

3 | 10,0, 0](%, y +10,0,2](0,0) + 0, 1,0](0,1)+(1,0) + [1,0, 1](2,5 + (2,0, 0] 0,0y

7

2 [070 1](%70)4_(%,1)_'_( ,0) + [07 1? 1](0,%)4_(1,5 + [17070](0’5)_}_(0’&)4_(1,% + [17072](%,0)
+[17 17 O](%,0)+(§,1) + [27 07 1](07%

4 [0707O](O,O)+(O,2)+(1,1)+(2,0) + [070 2](% %)4_(%,%) -+ [07 170] (2 7 2)4_(2,2)4_(2,2 + [27()? 2](0,0)
+[0,1,2](1,0) + 10,2,0]2(0,0)+(1,1) + [1,0, 1}(0,0)+2(0,1)+2(1,0)+(1,1) + [1, 1, 1]2(1 1)+ [27070](;

6 [O 0, 0]3(0 0)+3(1,1)4+(2,2) + [0 0, 2]3(2,2)4_(2,2)4_(2,2)_,_(2,2) + [07 170]4(2,2)4_2(2,2)4_2(2,2)4_
+[0,1, 2](0,0)42(0,1)+2(1,0)+(1,1) T (0,2, 0]3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0) T [0, 2 2](2,2
+10,3 0]2(1 + 10,4, 0](0,0) + [1,0,1}(0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1) + [1, 0, 3](§ 1+ 0
HL LTy dyeach racd.d) + 12000 +0.0+00) + 20053 10403, 84(3.2 3 g
+12,0,2](0,0)+(1,1) + [2,1,0](0,0)+2(0,1)+2(1,0)+(1,1) T [2,2 0](2,2 + 3,0, 1](%,%) 4,0, 0] (g

I7

2 [0707 1](O’§)+(07§)+(1,§ + [07 1, 1](%’0)4_(%,1) + [1a 0, O](§70)+(§,1)+(%,0) + [1707 2](07%)
‘|‘[17 17 O](O’%)+(1,% + [27 07 1](%,0)

9 [07070](%,%) + [07 0, 2](0,0) + [07 170](0,1)+(1,0) + [17 0, 1](%7%) + [27070](0,0)

% [0707 1](%,0) +[17070](0,%)

10 [07070](0,0)

Table 1: Long Konishi multiplet (a bit cut off)



Comparison between gauge and string theory states:

A < 1: gauge-theory operators built out of free fields,

canonical dim. A, determines operators that can mix

A > 1: 1n near-flat-space expansion string states built out of
free oscillators, level N determines states that can mix

(1) relate states with same global charges

(1) assume direct interpolation (no “level crossing”) for states with
same quantum numbers as A changes from small to large values



Gauge-string duality:

Konishi operator dual to
“lightest” among massive AdS5 x S° string states

large VA = R,

o

“short” strings probe near-flat limit of AdSs x S°

members of supermultiplet:
strings with spins/oscillators in different AdSs x S° directions



Flat space case:

N = 0: massless IIB supergravity (BPS) level
l.c. vacuum |0): (8 + 8)% = 256 states

N = 2: first massive level (many states, highly degenerate)

[((ay +521)]0)]* = [(8+8) x (8 + 8)]°

in SO(9) reps:

([2,0,0,0] +[0,0,1,0] + [1,0,0,1])% = (44 + 84 + 128)?

e.g. 44 x 44 =1+ 36 + 44 + 450 + 495 + 910

84 x84 = 14+36+44+844126+495+5944-924+ 198042772

switching on AdS5 x S° background fields lifts degeneracy
states with “lightest mass” at first excited string level
should correspond to Konishi multiplet



String spectrum in AdS5 x S° :

long multiplets of PSU(2,2|4)
highest weight states:
(o — Js, J1 — Jo, Jo + J3) (s, sr)s  SL.R = 3(S1 £ S2)

Flat-space string spectrum can be re-organized

in multiplets of SO(2,4) x SO(6) C PSU(2,2|4)
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4) x SO(5) C SO(9) rep.

lifted to SO(4) x SO(6) rep. of SO(2,4) x SO(6)

Konishi long multiplet
K=14+Q+QANQ+ ...)[0,0,0](070)
determines the “floor” of 1-st excited string level

ZBO:O [07 J7 O](O,O) X K



Spins: S1,S3 in AdSs; (Jp,J2)in S°
orbital momentum J = J3 in S°

Examples:

e folded string with spin S7; and momentum J:
Si=J=2— [0,2,0](1’1), A0:4

e folded string with spin J; and momentum J:
J=J=2— [2,0,2](0’0), A0:4

e circular string with spins J; = J9 and momentum .J:
Ji=Jo=1J=2— [0,1,2]0, Aog=06

e circular string with spins .S; = S5 and momentum J:
S1=58=1,J=2—= 10,1,2]0,0), Ao=6

e circular string with spins S| = J; and momentum J:

51:J1:1,J:2_> [17171](ll)’ AO:
272



Direct approaches to computation of quantum string energies:
(not relying on integrability)

(1) vertex operator approach:

use AdSs x S° string sigma model perturbation theory to find
leading terms in 2d anomalous dimension of corresponding
vertex operators and impose marginality condition

[Polyakov 01; AT 03; pure spinors: Mazzucato, Vallilo 11]

(1) “light-cone” gauge approach:

start with AdS light-cone gauge AdS5 x S° string action and
compute corrections to energy of corresponding flat-space
oscillator string state [Metsaev, Thorn, AT 00]

both yet to be developed in detail;

in practice, will be guided by vertex operator approach

but use indirect but easier to implement

“semiclassical” approach: “short string” limit of
semiclassical expansion [Tirziu, AT 08; Roiban, AT 09, 11]



Target space perspective:
2 _ 2N
=2

e.g. leading Regge trajectory (0x0x)%/2e*, N =S

string in flat space: p? = m

spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. 2d anomalous dimension operator 7 on scalar 7'(xz)
differential operator in target space
from (-function for the corresponding perturbation

1 _
/sz [Gmn(x)axmax” + T(:C)}
Ao/
Br=-2T -2 3T+ 0(T?
Y =Q""Dp Dy + .. + Q™ F Dy Dy + .
an — Gmn i 0(0/3), O~ O/nRP_”

I =

Solving —7 T+ m?T =0 (m? = —2)
same as diagonalizing ~



Massive string states in curved background:

/dDa:\/§ [ch_,(—D2 +m?+ X))+ ...
m2 — 2]Y ) X = R + O(Ck/)

87

case of AdS5 x S° background
Rin — 55 (F5F5)mn =0, R=0, F=0

Find leading-order term in X ...
leading o’ correction to scalar string state mass is 0 (?!)

[—=D* +m* +O0(5)]® =0
A:2+\/2N+4+O(7)
A, —2+2f{1+2f+0((ﬂ2)

Too naive: various subtleties (10d scalar vs singlet state, mixing)
What is found for non-singlet (susy descendant) Konishi states?



Vertex operator approach
calculate 2d anomalous dimensions from ““first principles”—
superstring theory in AdS5 x S° :

A\ _ _
= ZLL A0 |0Y,dY " + 9X,DX), + fermions |
T
Y7 Y24+ Y 4+ Y =1, X+, . +Xi=1

construct marginal (1,1) operators in terms of Y, and X},
e.g. vertex operator for dilaton (in NSR framework)

Vjy= (Y+)_A (Xm)‘] [BYpéYp + 0X,0X, + fermions}

Y. =Yy +iYs =2+ 2z tex, ~e?
X, =X{+iXy ~ e'?

2_2+F[ (A—4) = J(J + 4] + O(As)

ie. A=4+.J (BPS)




Vertex operators = eigenstates of 2d anomalous dimension matrix
particular linear combinations like

V = frr kpmy..omo. Xiy oo Xt 0Xm: 0Xomy . 0X oy 0X s

their renormalization studied in O(n) sigma model [Wegner 90]

simplest case: fx,. k, Xk, ..- Xk, With traceless fr,  k,

highest-weightrep V; = (X,)’, 7 =2 — 7‘](‘] +4) +

Higher massive states:
Flat space: bosonic string state on leading Regge trajectory

Vg =e Bt (3X5X) 8/2, X=x1 +ire, o E*=2(S—-2)
AdSs x S° : candidates for operators on leading Regge trajectory:

V= (V) 2 (0X,0X,)"% . X,=X +iX,

Vs = (V) 2(0v,0Y,)"",  Yu=vi+iv,



+ fermionic terms
1
VA
— mixing with operators with same charges and dimension.

+a ~ terms from diagonalization of anom. dim. op.

In general ((9X +0X x) 172 mixes with singlets
Ly _op, 2 L9 A
(X,)?PT21(0X,)27 ~P(0X,)27 T*1(0X0Xm )P (0X 10X )"
Example of higher-level scalar/singlet operator:
y; A [(axkéxk)r + } | N =2(r—1)

Marginality condition:
[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

1
2\51

(V)2

r = 1: ground level- fermions should make » = 1 zero of &

0=2(r—1)— [A(A — )+ 2r(r — 1)}

{%T(’r — 1) (r — %) - 47“] + ...



r = 2: excited level — analog of singlet Konishi state Ay = 2
__ _ 1
A(A—4)=4VA -4+ 0(Z5)

_ 4 1 1
A—Ao—2ﬁ{1+0xﬁ+()((ﬁ)2)}

fermionic contributions change subleading coefficients
Bosonic operators with momentum .J and spin J; = J’ in S°:

J' /2
VJ,J’ — Y_|-_A Z Clom Mpm
k,m=0
1 _ _ 1 -
M = X, 7Fm X (0X,)H(0X,)27 7H(0X,)™(0X,) 2 7

highest and lowest eigen-values of 1-loop anom. dim. matrix

i = 2 — J' + [A(A —4) = J(J+4) = LI +10) — 2JJ’} 4

1
2V
~ — 9 _ 7 1 . . 1 g g

Fmax = 2 J+2ﬁ{A(A 4)— J(T+4)— L +6)}+...

fermionic contributions change terms linear in .J’



How to take fermionic contributions into account?

(i) compute energies of semiclassical string states in —< expansion

vV
using full AdS5 x S° Green-Schwarz action

(i1) compare to structure of £ = A
expected from marginality condition

(iii) determine unknown coefficients in E(v/\)



General structure of dimension/energy A = E

marginality condition — condition on quantum numbers (;

Q: (E()\)7S1752;J17J27J3;"‘); N:ZZ a’iQi = level

0=2N + \%(Z%’j@i@j + Zé:CiQi)

,]

1
+ CijkQiQiQr + ) ¢;;QiQj + ) Qi) + ...
T (2 eun2i@ 22 )

i,J,k

. ) 1 n—+2
e highest power of () at n-loop order D Q

e dependence on “momenta” I and J = J3 1s special

e.g., they do not enter [V

e terms ( \/1X)n E™ are scheme-dependent (cf.(a/ D?)™ terms in 7)

choose susy-preserving scheme where Iv = J 1s the only solution
in BPS case — only £ terms are then left (ignore const shifts)

e terms ( \/lX)n E2QF can be traded for E-independent terms

in perturbative solution for &£



States on “leading Regge trajectory’:
(max spin for given F in flat limit)

Q = (E,J;N), N=spin component
marginality condition:

1
O:2N+ﬁ(—EQ—I—JQ—I—nOQNQ—I—nHN)

+ (n01J2N—|—n03N3—|—n12N2—|—n21N> —|—O(

1
(VN)?
solution for E? takes form [Roiban, AT 09, 11; BGMRT 12]

E? = 2VAN + J? + ngaeN?2 + ni1 N
+ =S (n01J2N + ngs N> + n1aN? + anN)

Y
(\?)2
VI

JEN™ terms: non-decoupling of c.o.m.

(VA3

(ﬁ11J2N + ﬁ02J2N2 + TLQ4N4 + TL13N3 + n22N2 + nglN)

(o1 J*N + Ri21 J2N + 112 J2N? + ngs N° + ...) + O( )




Expanding in large v/ for fixed N, .J

Aq A, 1
E=1\/2VAN|1+ —= + +0
1 [1 7w o)
Al EJ +%(n02]\7+n11)
Ay = —514% + Z(TL01J2 —|—TL03N2 + n1o N + ’n21)

Gives strong-coupling expansion of dimension
of corresponding gauge-theory operator

States on 1-st excited superstring level: N = 2
Konishi multiplet states: N = 2, J = 2

b 1
B = V2 e+ (O

b1 =1+ ng2 + 3111
by = —4b3 + 2ng1 + 2103 + 12 + %’@1




To find coefficients ng,,

use semiclassical “short string” (small spin) expansion:

e start with solitonic string carrying same charges

as vertex operator representing particular quantum string state
e perform semiclassical expansion: v\ > 1

for fixed classical parameters (N, J)

N=-2N, J=_J

e expand F in small values of N, J

e re-interpret the resulting £ in terms of NV, J

and read off ng,,

Key point: hmlt/\/'—\/x%(), J=x—0

corresponds to v/ > 1 for fixed values of quantum charges N, J



Rewrite £? in terms of N, J:

E
(\/—X)2 — (2N+ jz + n01j2N+ n02N2 + n03N3 + /T\/L()ljll./\/‘—l— ﬁ02j2./\/‘2 + )
+ \%(HMN’JF TN + nioN? + 0o T°N? + nisN° + )

1
(VA)?

e can now interpret ny,, as semiclassical £-loop contribution

+

(21N + Ay TN + naaN* + ) + O( 753 ) »

to N term in E: 1-st line is classical energy, 2nd is 1-loop, etc.
e semiclassical loop expansion (v > 1 for fixed N, J)
different from first loop expansion —in 2d anomalous dimension—
(v A > 1 for fixed N, J) but they contain same coefficients

e cach loop term in first expansion is polynomial in charges

but in semiclassical expansion each term may contain

infinite series in small 7, N expansion



Semiclassical expansion of £ organized as expansion in small A/
formally looks like series in powers of /V:

E?=J*4+ hi(\,J) N+ ha(\,J) N? + hs(\,J) N° +

for fixed J and large A
hy =2V +mpy 4 o (R et +.) +
. VA (\5) . VA (VA)?
h2:n02—|-—\/17)2\—|-..., hg—\/();—l—

exact result for “slope” h, for AdS5 folded spinning
string state (/N = .5) from Bethe Ansatz [Basso 11]

d
ha(\, J) = 2\5\—ﬂ InI;(VA)

l_j2
=2VAV1+ J? — 1
VAV T? - 1+j2 \FA(1+j2)5/2+
A A(FA = J?)

A+J2 (A4 J2)5/2

A+ J2 — + ...



[Can one find h; by direct summation of 4d or 2d
Feynmann diagrams (or via localization) ?]

But one needs to know also coefficients in ho, hgs, ...
(much more non-trivial, depend on wrapping corrections)

Strategy: consider examples of “small” semiclassical string states
corresponding to quantum string states with angular momentum J
and few oscillator modes excited (carrying spin)

e start with classical string solutions in flat space
representing states on leading Regge trajectory

e find the corresponding solutions in AdSs x S°

e find 1-loop correction to their £

e expand F in N = % — 0 — interpolate result to finite /V
e find the coefficients ng,,

e check universality of I/ for N = 2 (implied by susy)



Two basic classes of examples (V= spin, J= orbital momentum):
e circular string with 2 spins 1n two orthogonal planes

e folded string with spin in a plane

Rigid circular string rotating in two planes of R+

t=kK7T, X1 =21 +1ix9 = aez(TJ”’), Xo =T3+1T4 = ae

Egat = 2% =/ ZN, N=J+J, J1:J2:Z—2/

semiclassical counterpart of quantum string state created by

i(t—o)

J1

e bt |:((9X15X1)7 (8X25X2)% -+ ...

Folded string rotating in a plane

t=KT, X =x1+1ix9= asinoce"”

Fpat =/ 2N, N=5=2,,

semiclassical counterpart of quantum string state

et {(&cxéxx)sﬂ + }



3 ways to embed circular solutions into AdSs x S° :

(i) the two 2-planes in S°: J; = J, “small string”
(ii) the two 2-planes in AdS5: S1 = S5 “small string”

o

(iii) one plane in AdSs and the other in S°: S = J’ “small string’
2 choices — AdS5 or S° — for folded string

for N = 2 all 5 cases represent states on 1st string level;

for N = J = 2 they are particular members of Konishi multiplet
can be used to check universality of A-dependent part of A = F
for different states in supermultiplet



Spins: S1,S3 in AdSs; (Jp,J2)in S°
orbital momentum J = J3 in S°

Examples:

e folded string with spin S7; and momentum J:
Si=J=2— [0,2,0](1’1), A0:4

e folded string with spin J; and momentum J:
J=J=2— [2,0,2](0’0), A0:4

e circular string with spins J; = J9 and momentum .J:
Ji=Jo=1J=2— [0,1,2]0, Aog=06

e circular string with spins .S; = S5 and momentum J:
S1=58=1,J=2—= 10,1,2]0,0), Ao=6

e circular string with spins S| = J; and momentum J:

51:J1:1,J:2_> [17171](ll)’ AO:
272



Results: for several states on leading Regge trajectory

E2 — 2\/XN—|—J2 —|—TL02N2 —|—TL11N

1
+ ?(n01J2N -+ n03N3 -+ n12N2 -+ 77,21N)

(\15)2
(VA)3

e ng1 =1, ng1 = —i, ... from near-BMN expansion (J < V)
E? = 24 2NVA+ 2+ .. = 2+ N@VA+ 25 + )

e “tree-level” coeffs ngs, ng3, no4, ... are all rational

(511J2N + ﬁ02J2N2 + 77,04N4 + 77,13N3 + 77,22N2 + 77,31N>

_|_

(o1 J*N + Ri21 J2N + f12 J2N? + ngs N° + ...) + O( )

e leading 1-loop 7117 1s rational [Roiban, AT 09; Gromov et al 11]
® N1 = —Nni1,1.ein general [BGMRT 12]

1
h1—2f 1+j2+ j2 + T[n21+n21\72+0(«74)} ((\/1X)2)
no2 + J? 1

ha = 72 +\T>\[n12+ﬁ12~72+0(~74)}+O((\/1X)2)




— ! r 3 . .
o 1o =nly, — 3, ni, = —% — 2nyp3 is rational

[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]

(3 term 1s universal for states on leading Regge trajectory

Mg = Ny + 3(s + L2¢5, ), rational

e 11 contains universal (o1 (universal UV n > 1 asymptotics)
e.g. N1z = My + 17,G + G

e leading 2-loop coefficient noq 1s universal: no; = —%

for folded string state [Basso]; evidence from universality [BGMRT]
of the Konishi state energy (J = N = 2)

4 by bs b3
B, =VX2+ %+ + + }
A 1 VA (VA? (VAP
b1 =1+ nop2+ gn11 =2
2
1, 1 1
by = _Zbl + 2n91 + 2no3 + ni2 + SN2l =5 3C3

15
b3 = a1 + a2(3 + ECS :

b1, bo: match TBA predictions interpolated to A > 1



e need 2-loop string sigma model computation
to confirm universality of no1, fix noo — determine b3

Some details:

e Circular rotating string in S° with J; = J, = J":
flat space R; x R*: circular string solution

i(t—o)

i(t40) 7

Tr1+1xeo = ae T3 +1rxg = ae

E=\/%2J), J=¢%

directly embedded into R; x S° in AdSs x S° [Frolov, AT 03] :
string on small sphere inside S°: X7 + ...+ X¢ =1

X1 4+iXo=0ae™)  Xy+4+iX,=ael"T79)

X5—|—z'X6:\/1—2a2, t = KT

J =J =T =ad E2=r2=4T"



FEj 1s just as 1n flat space

Ey = VAE =\ 4V AT, J =V\T'

1-loop correction to energy: closed string (R x S1)
sum of bosonic and fermionic fluctuation frequencies (n = 0,1, 2, ...)
Bosons (2 massless + massive):

AdSs: 4x  wi=n*+4T

$7: 2% wip =0t +4(1 - J) £2/4(1 - T )n? + 47”7

Fermions:
Ax W =n?4+ 14T V40 -T2+ 4T’
Ei = 1 Z [4wn + 2(wnt + wp_) — 4(w! 4+ w! )}
26 £ nto e

expand in small 7' and do sums ((; come from ) _ )
1
/j/

FEi = [j/—(?)—i-CB)j/Q—%(5—|—6C3—|—30C5)j/3—|—...}



13
E=FE +E =2 \fAJ’{1+2\—5—1(1+263)

To get a state on the first excited string level (N = 2.J")
should choose J' = 1,ie. J; = J, =1
for minimal non-trivial value of J = J3 = 2

/

T +]

there is unique corresponding state in Konishi multiplet table:

0,1, 2]0,0) at level Ag = 6 and thus

2
1
b1:2<J__|__

) oy =2
&J' 2/ J=2,0'=1

e Small circular spinning string with 7 = S5
rigid circular string with two equal spins in AdS®
and orbital momentum J = J;5 in S°

Yo+iYs =1+ 2r2e™ | Yy +iYy = r (W to)

Y4 iYy =1 w0

Xs+iXg=e"", w*=r*+1, K2(1 +2r7) = 2r3(1 4+ w?) + V2



2kS

50:(1—|—QT2)/€:I£—|— 3251282:7“210,

V1+ k2

“short” string expansion of the classical energy

j2
Ey = V& , 50:2\78(1+8+§+ )

including 1-loop correction:

B =2 VaS [t (o4 25 1) vor

state on the first excited level (N = 2.5)

has two excited oscillators, i.e. should have S = 51 = 59 =1
for J = 2 the dual state in representation [0, 2, 0] (1,0)

there is just one state in Konishi table with Ag = 6

J? 1
by = 2(5 S —) _ 9
: T35 2 S—1,7=2



e Small circular spinning string with S = J; and J = J5 £ 0
rigid circular solution with one spin in AdS5 and one spin in S°
and orbital momentum J in S°

Yo+iVs =\1+r2e . Y, +iYy =rwrto) w? =K%+ 1,

X1 + ’LXQ —a €i(w/7 o) X3 -+ ZX4 =V 1 — a2€in y w’2 == 1/2 -+ 1 y
2

&:w§@+s+%+ )

The leading 1-loop correction to the energy vanishes
(cancellation of AdS and sphere contributions)

b+ 2 1+ (b4 ) vor

state on the first excited level: S = J; =1
at Ag = 6 level

for J = 2 get state [1,1,1] 1 1
(5,3)
1 J?
b :2(—5 -—) =2
: 2 + 85/ S5=1,7=2



Conclusions

e beginning of understanding of AdS5 x S° string spectrum

= spectrum of conformal N' = 4 SYM operators

e agreement with numerical results from TBA:

non-trivial check of quantum integrability

e prediction of transcendental structure of leading coefficients:
reproduce them by an analytic solution of TBA at strong coupling?
e evidence of universality of some coefficients in strong coupling
expansion of dimensions of states on leading Regge trajectory

e need systematic study of quantum string theory in AdSs x S°
in near-flat-space expansion

and of course we still need first-principles solution for the
spectrum of AdSs x S° superstring = spectrum of N' = 4 SYM

based on integrability

it 1s now appearing to be within reach ....



