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70-s: origin of
• string theory
• supersymmetric field theories in 2d, 4d, 10d
[Lars Brink’s talk]

but also of
• conformal field theory in 4d
[Polyakov, Ferrara et al, ... ]
• integrability of 2d sigma models
[Pohlmeyer, Luescher, Polyakov, Zamolodchikovs, ...]

and also of planar limit (N →∞, λ = g2
YMN=fixed) [’t Hooft]

N = 4 SYM: remarkable relation to all of these ideas

Relation of SYM to string theory? known since 70’s / early 80’s:
[Scherk et al; Brink, Green, Schwarz]



On-shell scattering amplitudes ofN = 4 SYM may be found from
α′ → 0 limit of superstring amplitudes in flat 10d spaceR1,3×T 6

But what about correlation functions of composite operators
= natural observables in a CFT ?
can one compute 2-point (spectrum of dimensions)
and 3-point (OPE coefficients) correlation functions of
conformal primary operators
[ e.g. 〈TrF 2

mn(x1)...TrF 2
pq(xn)〉 ]

from 10d flat-space string theory?!
not in an obvious or useful way (need an off-shell extension,...)

the idea that one can use string theory to solve N = 4 SYM
as a CFT using string theory would sound wild in 70’s ...
... especially if this string theory is in curved space
and with finite tension ...



Maximally symmetric case of gauge-string duality:
[Maldacena, Polyakov, Klebanov, Witten,...]
planar N = 4 super Yang-Mills ↔ free AdS5 × S5 superstring
closed string states onR×S1↔ gauge-inv. SYM states onR×S3

marginal str. vertex ops on R2↔ conf. primary SYM ops on R4

Remarkably, correlators of AdS5 × S5 string vertex operators
– analogs of S-matrix elements in flat 10d space —
are (expected to be) dual to correlators of
conformal operators of planar N = 4 SYM
In particular, relation of 2-point functions means that
spectrum of AdS5 × S5 string energies
↔ spectrum of dimensions of SYM primary operators

Then the spectrum of N = 4 SYM conformal dimensions ∆(λ)

should be possible to describe by 2dAdS5×S5 superstring sigma



Integrability:
allows “in principle” to solve the problem of spectrum
enormous progress in the last 10 years
Some key inputs: [not a proper review!]
• SYM action + perturbation theory (λ� 1)
• AdS5 × S5 GS superstring action + α′-expansion (

√
λ� 1)

• classical integrability of AdS5 × S5 GS action
[Bena, Polchinski, Roiban]

• perturbative integrability of SYM spectral problem:
(1-loop, 2-loop, ...) dilatation operator = spin chain Hamiltonian

[Minahan, Zarembo; Beisert, Staudacher, ...]
• guidance from large-charge limits: BMN, GKP, FT

Assume that integrability extends to all orders on both sides
• construct interpolating Bethe ansatz guided by general
principles, symmetries and data from both weak+strong coupling
• check consistency of its predictions



I. Spectrum of “long” operators / “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)
• its final [Beisert-Eden-Staudacher] form found by intricate
superposition of data from λ� 1 gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase, BMN),
symmetries (S-matrix), assumption of exact integrability
• consequences checked against available gauge and string data
Key example: cusp anomalous dimension – of Tr(ΦDSΦ)

∆ = S + 2 + f(λ) lnS + ... , S � 1
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1
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∑∞
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(−1)n

(2n+1)2 = 0.915...

from 2-loop string sigma-model integrals [Roiban,Tirziu,AT]
exact integral eq. [Basso, Korchemsky, Kotanski]: any order term



II. Spectrum of “short” operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)
• reconstructed from ABA using solely methods/intuition
of 2-d integrable QFT, i.e. inspired by string-theory side
• highly non-trivial construction – lack of 2-d Lorentz invariance
in standard BMN-vacuum-adapted l.c. gauge
• in few cases ABA “improved” by Luscher corrections is enough:
4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator
• complicated set of integral equations in need of simplification;
so far predictions extracted only numerically starting from
weak coupling and interpolating to larger λ
• need more data to check predictions at λ� 1 and λ� 1, i.e.
against perturbative gauge-theory and string-theory data



Key example:
dimension ∆ = 2 + γ(λ) of Konishi operator Tr(Φ̄iΦi)

γ(λ� 1) =
12λ

(4π)2

[
1− 4λ

(4π)2
+

28λ2

(4π)4

−
(
208− 48ζ3 + 120ζ5

) λ3

(4π)6

+ 8
(
158 + 72ζ3 − 54ζ2

3 − 90ζ5 + 315ζ7
) λ4

(4π)8
+ ...

]
5-loop result first found using integrability [Banjok,Janik]
confirmed by more standard methods [Velizhanin; Eden et al 12]

Suppose one can sum up (convergent) λ� 1 expansion
and then re-expand at λ� 1

What one should expect to get for γ(λ� 1)?



Duality to string theory predicts the structure
of strong-coupling expansion:
leading term – near-flat-space expansion for fixed quant. numbers
[Gubser, Klebanov, Polyakov 98]

∆ =

√
2N
√
λ+ ...

Subleading terms: α′ = 1√
λ

expansion of 2d anom. dimensions

of corresponding vertex operators [Roiban, AT 09] (N = 2)
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4
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√
λ
[
1 +
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Values of bk from string theory? From TBA?



Dimensions of “short” SYM operators
= energies of quantum string states

find leading α′ = 1√
λ

corrections to energy of

“lightest” massive string states on first massive string level
dual to operators in Konishi multiplet in SYM theory
– compare with predictions of TBA approach

important to check integrability-based approach
which involves subtle assumptions
directly against perturbative string sigma model

[similar checks were done, e.g., in standard O(n) models]



TBA results:
start at weak coupling for sl(2) Konishi descendant Tr(ΦD2Φ)

use TBA to find ∆(λ) numerically;
match to expected form of strong-coupling expansion to extract bk
[Gromov, Kazakov, Vieira 09; Frolov 10, 12]

b1 ≈ 1.988 , b2 ≈ −3.07

Compare to string theory:
One can find bk using semiclassical “short string” expansion
[Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

b1 = 2 , b2 = a− 3ζ3

rational a is found [Gromov, Valatka 11] using also “2-loop”
coefficient in exact slope function (E2 = h(λ)S) [Basso 11]

b2 =
1

2
− 3ζ3 ≈ −3.106...

Remarkable agreement with TBA - check of quantum integrability



Figure 1: Plot from Gromov, Kazakov, Vieira



Recent work on string side: [BGMRT 12]

• highest transcendentality terms in bk
are ∼ ζ2k−1 and have 1-loop origin, e.g.,

b3 = a1 + a2ζ3 + a3ζ5 , a3 =
15

2

rational a1 receives contribution from 3 loops; a2 from
2-loops, etc.; b4 ∼ ζ7 + ..., etc.

• supermultiplet structure: universality of coefficients in E
for string states with spins in different AdS5 × S5 directions:
dual operators from Konishi multiplet have same energy
(up to constant shift depending on position in the multiplet)

• states on leading Regge trajectory:
general structure of dependence of energy on
string tension

√
λ, string level (spin) and S5 orbital momentum J



Some open questions:

• Analytic form of strong-coupling expansion from TBA?

• only ζk coefficients in ∆(λ) in both
weak and strong coupling expansions
or other transcendental constants may also appear?
(cf. cusp anomalous dimension)
2-loop string computation may shed light on this ...

• Asymptotic form of strong coupling expansion:

interpretation of possible e−a
√
λ corrections?

• Energies of other quantum states: similar behavior?



Konishi multiplet:

long multiplet related to singlet [0, 0, 0](0,0) by susy

[J2 − J3, J1 − J2, J2 + J3](sL,sR)

sL,R = 1
2 (S1 ± S2)

SO(6) (J1, J2, J3) and SO(4) (S1, S2) labels
of SO(2, 4)× SO(6) global symmetry
[Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]

∆ = ∆0 + γ(λ), ∆0 = 2, 5
2 , 3, ..., 10

same anomalous dimension γ for all members

singlet eigen-state of anom. dim. matrix with lowest eigenvalue



Examples of gauge-theory operators in Konishi multiplet:

[0, 0, 0](0,0):
Tr(Φ̄iΦi), i = 1, 2, 3, ∆0 = 2

[2, 0, 2](0,0):
Tr([Φ1,Φ2]2) in su(2) sector, ∆0 = 4

[0, 2, 0](1,1):
Tr(Φ1D

2Φ1) in sl(2) sector, ∆0 = 4



∆0

2 [0, 0, 0](0,0)
5
2

[0, 0, 1](0, 1
2
) + [1, 0, 0]( 1

2
,0)

3 [0, 0, 0]( 1
2
, 1
2
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2
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2
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2
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2
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2
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2
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2
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2
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, 1
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,1) + [1, 0, 0]( 1

2
,0)+( 1

2
,1)+( 3

2
,0) + [1, 0, 2](0, 1

2
)

+[1, 1, 0](0, 1
2
)+(1, 1

2
) + [2, 0, 1]( 1

2
,0)

9 [0, 0, 0]( 1
2
, 1
2
) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1

2
, 1
2
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[0, 0, 1]( 1
2
,0) + [1, 0, 0](0, 1

2
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10 [0, 0, 0](0,0)

Table 1: Long Konishi multiplet (a bit cut off)



Comparison between gauge and string theory states:

λ� 1 : gauge-theory operators built out of free fields,
canonical dim. ∆0 determines operators that can mix

λ� 1: in near-flat-space expansion string states built out of
free oscillators, level N determines states that can mix

(i) relate states with same global charges

(ii) assume direct interpolation (no “level crossing”) for states with
same quantum numbers as λ changes from small to large values



Gauge-string duality:

Konishi operator dual to
“lightest” among massive AdS5 × S5 string states

large
√
λ = R2

α′ :
“short” strings probe near-flat limit of AdS5 × S5

members of supermultiplet:
strings with spins/oscillators in different AdS5 × S5 directions



Flat space case:

m2 = 2N
α′

N = 0: massless IIB supergravity (BPS) level
l.c. vacuum |0〉: (8 + 8)2 = 256 states

N = 2: first massive level (many states, highly degenerate)
[(ai−1 + Sa−1)|0〉]2 = [(8 + 8)× (8 + 8)]2

in SO(9) reps:
([2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1])2 = (44 + 84 + 128)2

e.g. 44× 44 = 1 + 36 + 44 + 450 + 495 + 910

84×84 = 1+36+44+84+126+495+594+924+1980+2772

switching on AdS5 × S5 background fields lifts degeneracy
states with “lightest mass” at first excited string level
should correspond to Konishi multiplet



String spectrum in AdS5 × S5 :

long multiplets of PSU(2, 2|4)

highest weight states:
[J2 − J3, J1 − J2, J2 + J3](sL,sR), sL,R = 1

2 (S1 ± S2)

Flat-space string spectrum can be re-organized
in multiplets of SO(2, 4)× SO(6) ⊂ PSU(2, 2|4)

[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4)× SO(5) ⊂ SO(9) rep.
lifted to SO(4)× SO(6) rep. of SO(2, 4)× SO(6)

Konishi long multiplet
K = (1 +Q+Q ∧Q+ ...)[0, 0, 0](0,0)

determines the “floor” of 1-st excited string level∑∞
J=0[0, J, 0](0,0) ×K



Spins: S1, S2 in AdS5; (J1, J2) in S5

orbital momentum J = J3 in S5

Examples:
• folded string with spin S1 and momentum J :
S1 = J = 2→ [0, 2, 0](1,1), ∆0 = 4

• folded string with spin J1 and momentum J :
J1 = J = 2→ [2, 0, 2](0,0), ∆0 = 4

• circular string with spins J1 = J2 and momentum J :
J1 = J2 = 1, J = 2→ [0, 1, 2](0,0), ∆0 = 6

• circular string with spins S1 = S2 and momentum J :
S1 = S2 = 1, J = 2→ [0, 1, 2](0,0), ∆0 = 6

• circular string with spins S1 = J1 and momentum J :
S1 = J1 = 1, J = 2→ [1, 1, 1]

(
1
2 ,

1
2 )

, ∆0 = 6



Direct approaches to computation of quantum string energies:
(not relying on integrability)
(i) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in 2d anomalous dimension of corresponding
vertex operators and impose marginality condition
[Polyakov 01; AT 03; pure spinors: Mazzucato,Vallilo 11]
(ii) “light-cone” gauge approach:
start with AdS light-cone gauge AdS5 × S5 string action and
compute corrections to energy of corresponding flat-space
oscillator string state [Metsaev, Thorn, AT 00]

both yet to be developed in detail;
in practice, will be guided by vertex operator approach
but use indirect but easier to implement
“semiclassical” approach: “short string” limit of
semiclassical expansion [Tirziu, AT 08; Roiban, AT 09, 11]



Target space perspective:
string in flat space: p2 = m2 = 2N

α′

e.g. leading Regge trajectory (∂x∂̄x)S/2eipx, N = S

spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. 2d anomalous dimension operator γ̂ on scalar T (x)

differential operator in target space
from β-function for the corresponding perturbation

I =
1

4πα′

∫
d2z
[
Gmn(x)∂xm∂̄xn + T (x)

]
βT = −2T − α′

2 γ̂ T +O(T 2)

γ̂ = ΩmnDmDn + ...+ Ωm...kDm...Dk + ...
Ωmn = Gmn +O(α′3), Ω.... ∼ α′nRp....

Solving −γ̂ T +m2T = 0 (m2 = − 4
α′ )

same as diagonalizing γ̂



Massive string states in curved background:∫
dDx
√
g
[
Φ...(−D2 +m2 +X)Φ... + ...

]
m2 = 2N

α′ , X = R.... +O(α′)

case of AdS5 × S5 background

Rmn − 1
96 (F5F5)mn = 0, R = 0 , F 2

5 = 0

Find leading-order term in X ...
leading α′ correction to scalar string state mass is 0 (?!)

[−D2 +m2 +O( 1√
λ

)]Φ = 0

∆ = 2 +
√

2N + 4 +O( 1√
λ

)

∆
N=2

= 2 + 2
4
√
λ
[
1 + 1

2
√
λ

+O( 1
(
√
λ)2

)
]

Too naive: various subtleties (10d scalar vs singlet state, mixing)
What is found for non-singlet (susy descendant) Konishi states?



Vertex operator approach
calculate 2d anomalous dimensions from “first principles”–
superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ
[
∂Yp∂̄Y

p + ∂Xk∂̄Xk + fermions
]

−Y 2
0 − Y 2

5 + Y 2
1 + ...+ Y 2

4 = −1 , X2
1 + ...+X2

6 = 1

construct marginal (1,1) operators in terms of Yp and Xk

e.g. vertex operator for dilaton (in NSR framework)

VJ = (Y+)−∆ (Xx)J
[
∂Yp∂̄Y

p + ∂Xk∂̄Xk + fermions
]

Y+ ≡ Y0 + iY5 = z + z−1xmxm ∼ eit

Xx ≡ X1 + iX2 ∼ eiϕ

2 = 2 +
1

2
√
λ

[∆(∆− 4)− J(J + 4)] +O( 1
(
√
λ)2

)

i.e. ∆ = 4 + J (BPS)



Vertex operators = eigenstates of 2d anomalous dimension matrix
particular linear combinations like

V = fk1...k`m1...m2s
Xk1 ...Xk`∂Xm1

∂̄Xm2
...∂Xm2s−1

∂̄Xm2s

their renormalization studied in O(n) sigma model [Wegner 90]
simplest case: fk1...k`Xk1 ...Xk` with traceless fk1...k`
highest-weight rep VJ = (Xx)J , γ̂ = 2− 1

2
√
λ
J(J + 4) + ...

Higher massive states:
Flat space: bosonic string state on leading Regge trajectory

VS = e−iEt
(
∂x∂̄x

)S/2
, x = x1 + ix2 , α′E2 = 2(S − 2)

AdS5×S5 : candidates for operators on leading Regge trajectory:

VJ = (Y+)−∆
(
∂Xx∂̄Xx

)J/2
, Xx ≡ X1 + iX2

VS = (Y+)−∆
(
∂Yu∂̄Yu

)S/2
, Yu ≡ Y1 + iY2



+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

– mixing with operators with same charges and dimension.

In general
(
∂Xx∂̄Xx

)J/2
mixes with singlets

(Xx)2p+2q(∂Xx)
1
2J
′−2p(∂̄Xx)

1
2J
′−2q(∂Xm∂Xm)p(∂̄Xk∂Xk)q

Example of higher-level scalar/singlet operator:

Y −∆
+

[
(∂Xk∂̄Xk)r + ...

]
, N = 2(r − 1)

Marginality condition:
[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0 = 2(r − 1)− 1

2
√
λ

[
∆(∆− 4) + 2r(r − 1)

]
− 1

(
√
λ)2

[
2
3r(r − 1)(r − 7

2 ) + 4r
]

+ ...

r = 1: ground level– fermions should make r = 1 zero of γ̂



r = 2: excited level – analog of singlet Konishi state ∆0 = 2

∆(∆− 4) = 4
√
λ− 4 +O( 1√

λ
) ,

∆−∆0 = 2
4
√
λ
[
1 + 0× 1√

λ
+O( 1

(
√
λ)2

)
]

fermionic contributions change subleading coefficients
Bosonic operators with momentum J and spin J1 ≡ J ′ in S5:

VJ,J ′ = Y −∆
+

J′/2∑
k,m=0

ckmMkm

Mkm ≡ XJ−k−m
y Xk+m

x (∂Xy)k(∂Xx)
1
2J
′−k(∂̄Xy)m(∂̄Xx)

1
2J
′−m

highest and lowest eigen-values of 1-loop anom. dim. matrix

γ̂min = 2− J ′ + 1

2
√
λ

[
∆(∆− 4)− J(J + 4)− 1

2J
′(J ′ + 10)− 2JJ ′

]
+ ...

γ̂max = 2− J ′ + 1

2
√
λ

[
∆(∆− 4)− J(J + 4)− 1

2J
′(J ′ + 6)

]
+ ...

fermionic contributions change terms linear in J ′



How to take fermionic contributions into account?

(i) compute energies of semiclassical string states in 1√
λ

expansion

using full AdS5 × S5 Green-Schwarz action

(ii) compare to structure of E = ∆

expected from marginality condition

(iii) determine unknown coefficients in E(
√
λ)



General structure of dimension/energy ∆ = E
marginality condition – condition on quantum numbers Qi
Q = (E(λ), S1, S2; J1, J2, J3; ...); N =

∑
i aiQi = level

0 = 2N +
1√
λ

(∑
i,j

cijQiQj +
∑
i

ciQi

)
+

1

(
√
λ)2

(∑
i,j,k

cijkQiQjQk +
∑
i,j

c′ijQiQj +
∑
i

c′iQi

)
+ ...

• highest power of Q at n-loop order 1
(
√
λ)n

Qn+2

• dependence on “momenta” E and J = J3 is special
e.g., they do not enter N
• terms 1

(
√
λ)n

Em are scheme-dependent (cf.(α′D2)n terms in γ̂)

choose susy-preserving scheme where E = J is the only solution
in BPS case – only E2 terms are then left (ignore const shifts)
• terms 1

(
√
λ)n

E2Qk can be traded for E-independent terms

in perturbative solution for E



States on “leading Regge trajectory”:
(max spin for given E in flat limit)
Q = (E, J ;N), N= spin component
marginality condition:

0 = 2N +
1√
λ

(
− E2 + J2 + n02N

2 + n11N
)

+
1

(
√
λ)2

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+O(
1

(
√
λ)3

)

solution for E2 takes form [Roiban, AT 09, 11; BGMRT 12]

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + ñ02J
2N2 + n04N

4 + n13N
3 + n22N

2 + n31N
)

+
1

(
√
λ)3

(
ñ01J

4N + ñ21J
2N + ñ12J

2N2 + n05N
5 + ...

)
+O(

1

(
√
λ)4

)

JkNm terms: non-decoupling of c.o.m.



Expanding in large
√
λ for fixed N, J

E =

√
2
√
λN
[
1 +

A1√
λ

+
A2

(
√
λ)2

+O(
1

(
√
λ)3

)
]

A1 =
1

4N
J2 +

1

4
(n02N + n11)

A2 = −1

2
A2

1 +
1

4
(n01J

2 + n03N
2 + n12N + n21)

Gives strong-coupling expansion of dimension
of corresponding gauge-theory operator

States on 1-st excited superstring level: N = 2

Konishi multiplet states: N = 2, J = 2

E =
4
√
λ
[
2 +

b1√
λ

+
b2

(
√
λ)2

+O(
1

(
√
λ)3

)
]

b1 = 1 + n02 + 1
2n11

b2 = −4b21 + 2n01 + 2n03 + n12 + 1
2n21



To find coefficients nkm
use semiclassical “short string” (small spin) expansion:

• start with solitonic string carrying same charges
as vertex operator representing particular quantum string state
• perform semiclassical expansion:

√
λ� 1

for fixed classical parameters (N ,J )

N = 1√
λ
N , J = 1√

λ
J

• expand E in small values of N ,J
• re-interpret the resulting E in terms of N, J

and read off nkm

Key point: limit N = N√
λ
→ 0, J = J√

λ
→ 0

corresponds to
√
λ� 1 for fixed values of quantum charges N, J



Rewrite E2 in terms of N ,J :

(
E√
λ

)2 = (2N + J 2 + n01J 2N + n02N 2 + n03N 3 + ñ01J 4N + ñ02J 2N 2 + ...)

+
1√
λ

(n11N + ñ11J 2N + n12N 2 + ñ12J 2N 2 + n13N 3 + ...)

+
1

(
√
λ)2

(n21N + ñ21J 2N + n22N 2 + ...) +O( 1
(
√
λ)3

) ,

• can now interpret nkm as semiclassical k-loop contribution
to Nm term in E: 1-st line is classical energy, 2nd is 1-loop, etc.
• semiclassical loop expansion (

√
λ� 1 for fixed N ,J )

different from first loop expansion –in 2d anomalous dimension–
(
√
λ� 1 for fixed N, J) but they contain same coefficients

• each loop term in first expansion is polynomial in charges
but in semiclassical expansion each term may contain
infinite series in small J ,N expansion



Semiclassical expansion ofE2 organized as expansion in smallN
formally looks like series in powers of N :

E2 = J2 + h1(λ, J) N + h2(λ, J) N2 + h3(λ, J) N3 + ...

for fixed J and large λ

h1 = 2
√
λ+ n11 +

n21√
λ

+
n31

(
√
λ)2

+ ...+ J2
(n01√

λ
+

ñ11

(
√
λ)2

+ ...
)

+ ...

h2 = n02 +
n12√
λ

+ ... , h3 =
n03√
λ

+ ...

exact result for “slope” h1 for AdS5 folded spinning
string state (N = S) from Bethe Ansatz [Basso 11]

h1(λ, J) = 2
√
λ

d

d
√
λ

ln IJ(
√
λ)

= 2
√
λ
√

1 + J 2 − 1

1 + J 2
−

1
4 − J

2

√
λ(1 + J 2)5/2

+ ...

= 2
√
λ+ J2 − λ

λ+ J2
−
λ( 1

4λ− J
2)

(λ+ J2)5/2
+ ...



[Can one find h1 by direct summation of 4d or 2d
Feynmann diagrams (or via localization) ?]

But one needs to know also coefficients in h2, h3, ...

(much more non-trivial, depend on wrapping corrections)

Strategy: consider examples of “small” semiclassical string states
corresponding to quantum string states with angular momentum J

and few oscillator modes excited (carrying spin)

• start with classical string solutions in flat space
representing states on leading Regge trajectory
• find the corresponding solutions in AdS5 × S5

• find 1-loop correction to their E
• expand E in N = N√

λ
→ 0 – interpolate result to finite N

• find the coefficients nkm
• check universality of E for N = 2 (implied by susy)



Two basic classes of examples (N= spin, J= orbital momentum):
• circular string with 2 spins in two orthogonal planes
• folded string with spin in a plane

Rigid circular string rotating in two planes of R4

t = κτ, x1 ≡ x1 + ix2 = a ei(τ+σ), x2 ≡ x3 + ix4 = a ei(τ−σ)

Eflat = κ
α′ =

√
2
α′N , N = J1 + J2, J1 = J2 = a2

α′

semiclassical counterpart of quantum string state created by

e−iEt
[
(∂x1∂̄x1)

J1
2 (∂x2∂̄x2)

J2
2 + ...

]
Folded string rotating in a plane

t = κτ , x1 ≡ x1 + ix2 = a sinσ eiτ

Eflat =
√

2
α′N , N = S = a2

2α′ ,

semiclassical counterpart of quantum string state

e−iEt
[
(∂xx∂̄xx)S/2 + ...

]



3 ways to embed circular solutions into AdS5 × S5 :

(i) the two 2-planes in S5: J1 = J2 “small string”
(ii) the two 2-planes in AdS5: S1 = S2 “small string”
(iii) one plane in AdS5 and the other in S5: S = J ′ “small string”

2 choices – AdS5 or S5 – for folded string

for N = 2 all 5 cases represent states on 1st string level;
for N = J = 2 they are particular members of Konishi multiplet
can be used to check universality of λ-dependent part of ∆ = E

for different states in supermultiplet



Spins: S1, S2 in AdS5; (J1, J2) in S5

orbital momentum J = J3 in S5

Examples:
• folded string with spin S1 and momentum J :
S1 = J = 2→ [0, 2, 0](1,1), ∆0 = 4

• folded string with spin J1 and momentum J :
J1 = J = 2→ [2, 0, 2](0,0), ∆0 = 4

• circular string with spins J1 = J2 and momentum J :
J1 = J2 = 1, J = 2→ [0, 1, 2](0,0), ∆0 = 6

• circular string with spins S1 = S2 and momentum J :
S1 = S2 = 1, J = 2→ [0, 1, 2](0,0), ∆0 = 6

• circular string with spins S1 = J1 and momentum J :
S1 = J1 = 1, J = 2→ [1, 1, 1]

(
1
2 ,

1
2 )

, ∆0 = 6



Results: for several states on leading Regge trajectory

E2 = 2
√
λN + J2 + n02N

2 + n11N

+
1√
λ

(
n01J

2N + n03N
3 + n12N

2 + n21N
)

+
1

(
√
λ)2

(
ñ11J

2N + ñ02J
2N2 + n04N

4 + n13N
3 + n22N

2 + n31N
)

+
1

(
√
λ)3

(
ñ01J

4N + ñ21J
2N + ñ12J

2N2 + n05N
5 + ...

)
+O(

1

(
√
λ)4

)

• n01 = 1, ñ01 = − 1
4 , ... from near-BMN expansion (J �

√
λ)

E2 = J2 + 2N
√
λ+ J2 + ... = J2 +N(2

√
λ+ J2

√
λ

+ ...)

• “tree-level” coeffs n02, n03, n04, ... are all rational
• leading 1-loop n11 is rational [Roiban, AT 09; Gromov et al 11]
• ñ11 = −n11, i.e in general [BGMRT 12]

h1 = 2
√
λ
√

1 + J 2 +
n11

1 + J 2
+

1√
λ

[
n21 + ñ21J 2 +O(J 4)

]
+O( 1

(
√
λ)2

)

h2 =
n02 + J 2

1 + J 2
+

1√
λ

[
n12 + ñ12J 2 +O(J 4)

]
+O( 1

(
√
λ)2

)



• n12 = n′12 − 3ζ3, n′12 = − 3
8 − 2n03 is rational

[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]
ζ3 term is universal for states on leading Regge trajectory
• ñ12 = ñ′12 + 3ζ3 + 15

4 ζ5, ñ′12 rational
• n1k contains universal ζ2k−1 (universal UV n� 1 asymptotics)
e.g. n13 = ñ′12 + ñ′′1kζ3 + 15

4 ζ5
• leading 2-loop coefficient n21 is universal: n21 = − 1

4

for folded string state [Basso]; evidence from universality [BGMRT]
of the Konishi state energy (J = N = 2)

E
N=J=2

=
4
√
λ
[
2 +

b1√
λ

+
b2

(
√
λ)2

+
b3

(
√
λ)3

+ ...
]

b1 = 1 + n02 +
1

2
n11 = 2

b2 = −1

4
b21 + 2n01 + 2n03 + n12 +

1

2
n21 =

1

2
− 3ζ3

b3 = a1 + a2ζ3 +
15

2
ζ5 , ...

b1, b2: match TBA predictions interpolated to λ� 1



• need 2-loop string sigma model computation
to confirm universality of n21, fix n22 → determine b3

Some details:

• Circular rotating string in S5 with J1 = J2 ≡ J ′:
flat space Rt ×R4: circular string solution

x1 + ix2 = a ei(τ+σ) , x3 + ix4 = a ei(τ−σ)

E =
√

4
α′ J
′, J ′ = a2

α′

directly embedded into Rt × S5 in AdS5 × S5 [Frolov, AT 03] :
string on small sphere inside S5: X2

1 + ...+X2
6 = 1

X1 + iX2 = a ei(τ+σ), X3 + iX4 = a ei(τ−σ) ,

X5 + iX6 =
√

1− 2a2, t = κτ
J ′ = J1 = J2 = a2, E2

0 = κ2 = 4J ′



E0 is just as in flat space

E0 =
√
λE =

√
4
√
λJ ′ , J ′ =

√
λJ ′

1-loop correction to energy: closed string (R× S1)
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)
Bosons (2 massless + massive):

AdS5 : 4× ω2
n = n2 + 4J ′

S5 : 2× ω2
n± = n2 + 4(1− J ′)± 2

√
4(1− J ′)n2 + 4J ′2

Fermions:

4× ω2
n
f
± = n2 + 1 + J ′ ±

√
4(1− J ′)n2 + 4J ′

E1 =
1

2κ

∞∑
n=−∞

[
4ωn + 2(ωn+ + ωn−)− 4(ωfn+ + ωfn−)

]
expand in small J ′ and do sums (ζk come from

∑
n)

E1 =
1√
J ′
[
J ′ − (3 + ζ3)J ′2 − 1

4

(
5 + 6ζ3 + 30ζ5

)
J ′3 + . . .

]



E = E0 + E1 = 2

√√
λJ ′
[
1 +

1

2
√
λ
− 3

4
(1 + 2ζ3)

J ′

(
√
λ)2

+ ...
]

To get a state on the first excited string level (N = 2J ′)
should choose J ′ = 1, i.e. J1 = J2 = 1

for minimal non-trivial value of J = J3 = 2

there is unique corresponding state in Konishi multiplet table:
[0, 1, 2](0,0) at level ∆0 = 6 and thus

b1 = 2
( J2

8J ′
+

1

2

)
J=2,J′=1

= 2

• Small circular spinning string with S1 = S2

rigid circular string with two equal spins in AdS5

and orbital momentum J = J3 in S5

Y0 + iY5 =
√

1 + 2r2 eiκt , Y1 + iY2 = r ei(wτ+σ) , Y3 + iY4 = r ei(wτ−σ)

X5 + iX6 = eiντ , w2 = κ2 + 1 , κ2(1 + 2r2) = 2r2(1 + w2) + ν2



E0 = (1 + 2r2)κ = κ+
2κS√
1 + κ2

, S = S1 = S2 = r2w , J = ν

“short” string expansion of the classical energy

E0 =
√
λE0 , E0 = 2

√
S
(

1 + S +
J 2

8S
+ ...

)
including 1-loop correction:

E0 + E1 = 2

√√
λS
[
1 +

1√
λ

(
S +

J2

8S
− 1

2

)
+O(

1

(
√
λ)2

)
]

state on the first excited level (N = 2S)
has two excited oscillators, i.e. should have S = S1 = S2 = 1

for J = 2 the dual state in representation [0, 2, 0](1,0)

there is just one state in Konishi table with ∆0 = 6

b1 = 2
(
S +

J2

8S
− 1

2

)
S=1,J=2

= 2



• Small circular spinning string with S = J1 and J = J2 6= 0

rigid circular solution with one spin in AdS5 and one spin in S5

and orbital momentum J in S5

Y0 + iY5 =
√

1 + r2 eiκt , Y1 + iY2 = r ei(wτ+σ) , w2 = κ2 + 1 ,

X1 + iX2 = a ei(w
′τ−σ) , X3 + iX4 =

√
1− a2eiντ , w′2 = ν2 + 1 ,

E0 = 2
√
S
(

1 +
1

2
S +

J 2

8S
+ ...

)
The leading 1-loop correction to the energy vanishes
(cancellation of AdS and sphere contributions)

E0 + E1 = 2

√√
λS
[
1 +

1√
λ

(1

2
S +

J2
2

8S

)
+O(

1

(
√
λ)2

)
]

state on the first excited level: S = J1 = 1

for J = 2 get state [1, 1, 1]
(
1
2 ,

1
2 )

at ∆0 = 6 level

b1 = 2
(1

2
S +

J2

8S

)
S=1,J=2

= 2



Conclusions
• beginning of understanding of AdS5 × S5 string spectrum
= spectrum of conformal N = 4 SYM operators
• agreement with numerical results from TBA:
non-trivial check of quantum integrability
• prediction of transcendental structure of leading coefficients:
reproduce them by an analytic solution of TBA at strong coupling?
• evidence of universality of some coefficients in strong coupling
expansion of dimensions of states on leading Regge trajectory
• need systematic study of quantum string theory in AdS5 × S5

in near-flat-space expansion

and of course we still need first-principles solution for the
spectrum of AdS5 × S5 superstring = spectrum of N = 4 SYM
based on integrability

it is now appearing to be within reach ....


