Short spinning strings

and $AdS_5 \times S^5$ spectrum

Arkady Tseytlin

R. Roiban, AT, arXiv:0906.4294, arXiv:1102.1209

M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arXiv:1203.5710

70-s: origin of

- string theory
- supersymmetric field theories in 2d, 4d, 10d [Lars Brink's talk]

but also of

- conformal field theory in 4d [Polyakov, Ferrara et al, ...]
- integrability of 2d sigma models [Pohlmeyer, Luescher, Polyakov, Zamolodchikovs, ...]

and also of planar limit ($N \to \infty, \ \lambda = g_{\rm YM}^2 N$ =fixed) ['t Hooft]

 $\mathcal{N} = 4$ SYM: remarkable relation to all of these ideas

Relation of SYM to string theory? known since 70's / early 80's: [Scherk et al; Brink, Green, Schwarz]

On-shell scattering amplitudes of $\mathcal{N}=4$ SYM may be found from $\alpha'\to 0$ limit of superstring amplitudes in flat 10d space $R^{1,3}\times T^6$

But what about correlation functions of composite operators = natural observables in a CFT? can one compute 2-point (spectrum of dimensions) and 3-point (OPE coefficients) correlation functions of conformal primary operators [e.g. $\langle \text{Tr} F_{mn}^2(x_1)...\text{Tr} F_{pq}^2(x_n) \rangle$] from 10d flat-space string theory?! not in an obvious or useful way (need an off-shell extension,...)

the idea that one can use string theory to solve $\mathcal{N}=4$ SYM as a CFT using string theory would sound wild in 70's especially if this string theory is in curved space and with finite tension ...

Maximally symmetric case of gauge-string duality:

[Maldacena, Polyakov, Klebanov, Witten,...] planar $\mathcal{N}=4$ super Yang-Mills \leftrightarrow free $AdS_5 \times S^5$ superstring closed string states on $R \times S^1 \leftrightarrow$ gauge-inv. SYM states on $R \times S^3$ marginal str. vertex ops on $R^2 \leftrightarrow$ conf. primary SYM ops on R^4

Remarkably, correlators of $AdS_5 \times S^5$ string vertex operators – analogs of S-matrix elements in flat 10d space — are (expected to be) dual to correlators of conformal operators of planar $\mathcal{N}=4$ SYM In particular, relation of 2-point functions means that spectrum of $AdS_5 \times S^5$ string energies \leftrightarrow spectrum of dimensions of SYM primary operators

Then the spectrum of $\mathcal{N}=4$ SYM conformal dimensions $\Delta(\lambda)$ should be possible to describe by 2d $AdS_5 \times S^5$ superstring sigma

Integrability:

allows "in principle" to solve the problem of spectrum enormous progress in the last 10 years

Some key inputs: [not a proper review!]

- SYM action + perturbation theory ($\lambda \ll 1$)
- $AdS_5 \times S^5$ GS superstring action + α' -expansion ($\sqrt{\lambda} \gg 1$)
- classical integrability of $AdS_5 \times S^5$ GS action [Bena, Polchinski, Roiban]
- perturbative integrability of SYM spectral problem:
- (1-loop, 2-loop, ...) dilatation operator = spin chain Hamiltonian [Minahan, Zarembo; Beisert, Staudacher, ...]
- guidance from large-charge limits: BMN, GKP, FT

Assume that integrability extends to all orders on both sides

- construct interpolating Bethe ansatz guided by general principles, symmetries and data from both weak+strong coupling
- check consistency of its predictions

- I. Spectrum of "long" operators / "semiclassical" string states determined by Asymptotic Bethe Ansatz (2002-2007)
- its final [Beisert-Eden-Staudacher] form found by intricate superposition of data from $\lambda \ll 1$ gauge theory (spin chain, BA,...) and perturbative string theory (classical and 1-loop phase, BMN), symmetries (S-matrix), assumption of exact integrability
- consequences checked against available gauge and string data Key example: cusp anomalous dimension – of $\text{Tr}(\Phi D^S \Phi)$

$$\begin{split} \Delta &= S + 2 + f(\lambda) \ln S + \dots, \quad S \gg 1 \\ f_{\lambda \ll 1} &= \frac{\lambda}{2\pi^2} \Big[1 - \frac{\lambda}{48} + \frac{11\lambda^2}{45 \cdot 2^8} - (\frac{73}{630} + \frac{4\zeta_3^2}{\pi^6}) \frac{\lambda^3}{2^7} + \dots \Big] \\ f_{\lambda \gg 1} &= \frac{\sqrt{\lambda}}{\pi} \Big[1 - \frac{3 \ln 2}{\sqrt{\lambda}} - \frac{K}{(\sqrt{\lambda})^2} - \dots \Big] \end{split}$$

 $\zeta_k = \zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$, $K = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = 0.915...$ from 2-loop string sigma-model integrals [Roiban, Tirziu, AT] exact integral eq. [Basso, Korchemsky, Kotanski]: any order term

II. Spectrum of "short" operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)

- reconstructed from ABA using solely methods/intuition of 2-d integrable QFT, i.e. inspired by string-theory side
- highly non-trivial construction lack of 2-d Lorentz invariance in standard BMN-vacuum-adapted l.c. gauge
- in few cases ABA "improved" by Luscher corrections is enough:
- 4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator
- ullet complicated set of integral equations in need of simplification; so far predictions extracted only numerically starting from weak coupling and interpolating to larger λ
- need more data to check predictions at $\lambda \ll 1$ and $\lambda \gg 1$, i.e. against perturbative gauge-theory and string-theory data

Key example:

dimension $\Delta = 2 + \gamma(\lambda)$ of Konishi operator $Tr(\bar{\Phi}_i \Phi_i)$

$$\gamma(\lambda \ll 1) = \frac{12\lambda}{(4\pi)^2} \left[1 - \frac{4\lambda}{(4\pi)^2} + \frac{28\lambda^2}{(4\pi)^4} - \left(208 - 48\zeta_3 + 120\zeta_5 \right) \frac{\lambda^3}{(4\pi)^6} + 8\left(158 + 72\zeta_3 - 54\zeta_3^2 - 90\zeta_5 + 315\zeta_7 \right) \frac{\lambda^4}{(4\pi)^8} + \dots \right]$$

5-loop result first found using integrability [Banjok,Janik] confirmed by more standard methods [Velizhanin; Eden et al 12]

Suppose one can sum up (convergent) $\lambda\ll 1$ expansion and then re-expand at $\lambda\gg 1$

What one should expect to get for $\gamma(\lambda \gg 1)$?

Duality to string theory predicts the structure of strong-coupling expansion:

leading term – near-flat-space expansion for fixed quant. numbers [Gubser, Klebanov, Polyakov 98]

$$\Delta = \sqrt{2N\sqrt{\lambda}} + \dots$$

Subleading terms: $\alpha' = \frac{1}{\sqrt{\lambda}}$ expansion of 2d anom. dimensions of corresponding vertex operators [Roiban, AT 09] (N=2)

$$\gamma(\lambda \gg 1) = 2\sqrt[4]{\lambda} + \frac{b_1}{\sqrt[4]{\lambda}} + \frac{b_2}{(\sqrt[4]{\lambda})^3} + \frac{b_3}{(\sqrt[4]{\lambda})^{5/2}} + \dots$$
$$= 2\sqrt[4]{\lambda} \left[1 + \frac{b_1}{2\sqrt{\lambda}} + \frac{b_2}{2(\sqrt{\lambda})^2} + \frac{b_3}{2(\sqrt{\lambda})^3} + \dots \right]$$

Values of b_k from string theory? From TBA?

Dimensions of "short" SYM operators = energies of quantum string states

find leading $\alpha' = \frac{1}{\sqrt{\lambda}}$ corrections to energy of "lightest" massive string states on first massive string level dual to operators in Konishi multiplet in SYM theory – compare with predictions of TBA approach

important to check integrability-based approach which involves subtle assumptions directly against perturbative string sigma model

[similar checks were done, e.g., in standard O(n) models]

TBA results:

start at weak coupling for sl(2) Konishi descendant ${\rm Tr}(\Phi D^2\Phi)$ use TBA to find $\Delta(\lambda)$ numerically; match to expected form of strong-coupling expansion to extract b_k [Gromov, Kazakov, Vieira 09; Frolov 10, 12]

$$b_1 \approx 1.988 \; , \qquad b_2 \approx -3.07$$

Compare to string theory:

One can find b_k using semiclassical "short string" expansion [Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

$$b_1 = 2$$
, $b_2 = a - 3\zeta_3$

rational a is found [Gromov, Valatka 11] using also "2-loop" coefficient in exact slope function ($E^2 = h(\lambda)S$) [Basso 11]

$$b_2 = \frac{1}{2} - 3\zeta_3 \approx -3.106...$$

Remarkable agreement with TBA - check of quantum integrability

Figure 1: Plot from Gromov, Kazakov, Vieira

Recent work on string side: [BGMRT 12]

• highest transcendentality terms in b_k are $\sim \zeta_{2k-1}$ and have 1-loop origin, e.g.,

$$b_3 = a_1 + a_2\zeta_3 + a_3\zeta_5$$
, $a_3 = \frac{15}{2}$

rational a_1 receives contribution from 3 loops; a_2 from 2-loops, etc.; $b_4 \sim \zeta_7 + ...$, etc.

- supermultiplet structure: universality of coefficients in E for string states with spins in different $AdS_5 \times S^5$ directions: dual operators from Konishi multiplet have same energy (up to constant shift depending on position in the multiplet)
- states on leading Regge trajectory: general structure of dependence of energy on string tension $\sqrt{\lambda}$, string level (spin) and S^5 orbital momentum J

Some open questions:

- Analytic form of strong-coupling expansion from TBA?
- only ζ_k coefficients in $\Delta(\lambda)$ in both weak and strong coupling expansions or other transcendental constants may also appear? (cf. cusp anomalous dimension) 2-loop string computation may shed light on this ...
- Asymptotic form of strong coupling expansion: interpretation of possible $e^{-a\sqrt{\lambda}}$ corrections?
- Energies of other quantum states: similar behavior?

Konishi multiplet:

long multiplet related to singlet $[0, 0, 0]_{(0,0)}$ by susy

$$[J_2 - J_3, J_1 - J_2, J_2 + J_3]_{(s_L, s_R)}$$

$$s_{L,R} = \frac{1}{2}(S_1 \pm S_2)$$

SO(6) (J_1,J_2,J_3) and SO(4) (S_1,S_2) labels of $SO(2,4)\times SO(6)$ global symmetry [Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]

$$\Delta = \Delta_0 + \gamma(\lambda), \quad \Delta_0 = 2, \frac{5}{2}, 3, ..., 10$$
 same anomalous dimension γ for all members

singlet eigen-state of anom. dim. matrix with lowest eigenvalue

Examples of gauge-theory operators in Konishi multiplet:

$$[0,0,0]_{(0,0)}$$
:
 $\text{Tr}(\bar{\Phi}_i\Phi_i), \quad i=1,2,3, \qquad \Delta_0=2$

$$[2,0,2]_{(0,0)}$$
: $Tr([\Phi_1,\Phi_2]^2)$ in $su(2)$ sector, $\Delta_0=4$

$$[0,2,0]_{(1,1)}$$
:
$${\rm Tr}(\Phi_1 D^2 \Phi_1) \ {\rm in} \ sl(2) \ {\rm sector}, \qquad \Delta_0 = 4$$

Δ_0	
2	$[0,0,0]_{(0,0)}$
$\frac{5}{2}$	$[0,0,1]_{(0,\frac{1}{2})} + [1,0,0]_{(\frac{1}{2},0)}$
3	$[0,0,0]_{(\frac{1}{2},\frac{1}{2})} + [0,0,2]_{(0,0)} + [0,1,0]_{(0,1)+(1,0)} + [1,0,1]_{(\frac{1}{2},\frac{1}{2})} + [2,0,0]_{(0,0)}$
$\frac{7}{2}$	$[0,0,1]_{(\frac{1}{2},0)+(\frac{1}{2},1)+(\frac{3}{2},0)} + [0,1,1]_{(0,\frac{1}{2})+(1,\frac{1}{2})} + [1,0,0]_{(0,\frac{1}{2})+(0,\frac{3}{2})+(1,\frac{1}{2})} + [1,0,2]_{(\frac{1}{2},0)}$
	$+[1,1,0]_{(\frac{1}{2},0)+(\frac{1}{2},1)}+[2,0,1]_{(0,\frac{1}{2})}$
4	$[0,0,0]_{(0,0)+(0,2)+(1,1)+(2,0)} + [0,0,2]_{(\frac{1}{2},\frac{1}{2})+(\frac{3}{2},\frac{1}{2})} + [0,1,0]_{2(\frac{1}{2},\frac{1}{2})+(\frac{1}{2},\frac{3}{2})+(\frac{3}{2},\frac{1}{2})} + [2,0,2]_{(0,0)}$
	$+[0,1,2]_{(1,0)}+[0,2,0]_{2(0,0)+(1,1)}+[1,0,1]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[1,1,1]_{2(\frac{1}{2},\frac{1}{2})}+[2,0,0]_{(\frac{1}{2})}$
6	$[0,0,0]_{3(0,0)+3(1,1)+(2,2)} + [0,0,2]_{3(\frac{1}{2},\frac{1}{2})+(\frac{1}{2},\frac{3}{2})+(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{3}{2})} + [0,1,0]_{4(\frac{1}{2},\frac{1}{2})+2(\frac{1}{2},\frac{3}{2})+2(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{3}{2})} + [0,1,0]_{4(\frac{1}{2},\frac{1}{2})+2(\frac{1}{2},\frac{3}{2})+2(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{3}{2})+(\frac{3}{2},\frac$
	$+[0,1,2]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[0,2,0]_{3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0)}+[0,2,2]_{(\frac{1}{2},\frac{1}{2})}$
	$+[0,3,0]_{2(\frac{1}{2},\frac{1}{2})}+[0,4,0]_{(0,0)}+[1,0,1]_{(0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1)}+[1,0,3]_{(\frac{1}{2},\frac{1}{2})}+[0,0,0]_{(0,0)}$
	$+[1,1,1]_{4(\frac{1}{2},\frac{1}{2})+2(\frac{1}{2},\frac{3}{2})+2(\frac{3}{2},\frac{1}{2})}+[1,2,1]_{(0,0)+(0,1)+(1,0)}+[2,0,0]_{3(\frac{1}{2},\frac{1}{2})+(\frac{1}{2},\frac{3}{2})+(\frac{3}{2},\frac{1}{2})+(\frac{3}{2},\frac{3}{2})}$
	$+[2,0,2]_{(0,0)+(1,1)} + [2,1,0]_{(0,0)+2(0,1)+2(1,0)+(1,1)} + [2,2,0]_{(\frac{1}{2},\frac{1}{2})} + [3,0,1]_{(\frac{1}{2},\frac{1}{2})} + [4,0,0]_{(0,0)}$
$\frac{17}{2}$	$[0,0,1]_{(0,\frac{1}{2})+(0,\frac{3}{2})+(1,\frac{1}{2})} + [0,1,1]_{(\frac{1}{2},0)+(\frac{1}{2},1)} + [1,0,0]_{(\frac{1}{2},0)+(\frac{1}{2},1)+(\frac{3}{2},0)} + [1,0,2]_{(0,\frac{1}{2})}$
	$+[1,1,0]_{(0,\frac{1}{2})+(1,\frac{1}{2})}+[2,0,1]_{(\frac{1}{2},0)}$
9	$[0,0,0]_{\left(\frac{1}{2},\frac{1}{2}\right)} + [0,0,2]_{(0,0)} + [0,1,0]_{(0,1)+(1,0)} + [1,0,1]_{\left(\frac{1}{2},\frac{1}{2}\right)} + [2,0,0]_{(0,0)}$
$\frac{19}{2}$	$[0,0,1]_{(\frac{1}{2},0)} + [1,0,0]_{(0,\frac{1}{2})}$
10	$[0,0,0]_{(0,0)}$

Table 1: Long Konishi multiplet (a bit cut off)

Comparison between gauge and string theory states:

 $\lambda \ll 1$: gauge-theory operators built out of free fields, canonical dim. Δ_0 determines operators that can mix

 $\lambda \gg 1$: in near-flat-space expansion string states built out of free oscillators, level N determines states that can mix

(i) relate states with same global charges

(ii) assume direct interpolation (no "level crossing") for states with same quantum numbers as λ changes from small to large values

Gauge-string duality:

Konishi operator dual to

"lightest" among massive $AdS_5 \times S^5$ string states

large
$$\sqrt{\lambda} = \frac{R^2}{\alpha'}$$
:

"short" strings probe near-flat limit of $AdS_5 \times S^5$

members of supermultiplet:

strings with spins/oscillators in different $AdS_5 \times S^5$ directions

Flat space case:

$$m^2 = \frac{2N}{\alpha'}$$

N = 0: massless IIB supergravity (BPS) level

1.c. vacuum $|0\rangle$: $(8+8)^2 = 256$ states

N=2: first massive level (many states, highly degenerate)

$$[(a_{-1}^i + S_{-1}^a)|0\rangle]^2 = [(8+8) \times (8+8)]^2$$

in SO(9) reps:

$$([2,0,0,0] + [0,0,1,0] + [1,0,0,1])^2 = (44 + 84 + 128)^2$$

e.g.
$$44 \times 44 = 1 + 36 + 44 + 450 + 495 + 910$$

$$84 \times 84 = 1 + 36 + 44 + 84 + 126 + 495 + 594 + 924 + 1980 + 2772$$

switching on $AdS_5 \times S^5$ background fields lifts degeneracy states with "lightest mass" at first excited string level should correspond to Konishi multiplet

String spectrum in $AdS_5 \times S^5$:

long multiplets of PSU(2,2|4)

highest weight states:

$$[J_2 - J_3, J_1 - J_2, J_2 + J_3]_{(s_L, s_R)}, \quad s_{L,R} = \frac{1}{2}(S_1 \pm S_2)$$

Flat-space string spectrum can be re-organized in multiplets of $SO(2,4) \times SO(6) \subset PSU(2,2|4)$ [Bianchi, Morales, Samtleben 03; Beisert et al 03] $SO(4) \times SO(5) \subset SO(9)$ rep. lifted to $SO(4) \times SO(6)$ rep. of $SO(2,4) \times SO(6)$

Konishi long multiplet

$$\mathcal{K} = (1 + Q + Q \wedge Q + ...)[0, 0, 0]_{(0,0)}$$
 determines the "floor" of 1-st excited string level
$$\sum_{J=0}^{\infty} [0, J, 0]_{(0,0)} \times \mathcal{K}$$

Spins: S_1, S_2 in AdS_5 ; (J_1, J_2) in S^5 orbital momentum $J = J_3$ in S^5

Examples:

• folded string with spin S_1 and momentum J:

$$S_1 = J = 2 \rightarrow [0, 2, 0]_{(1,1)}, \quad \Delta_0 = 4$$

 \bullet folded string with spin J_1 and momentum J:

$$J_1 = J = 2 \rightarrow [2, 0, 2]_{(0,0)}, \quad \Delta_0 = 4$$

 \bullet circular string with spins $J_1 = J_2$ and momentum J:

$$J_1 = J_2 = 1, J = 2 \rightarrow [0, 1, 2]_{(0,0)}, \Delta_0 = 6$$

 \bullet circular string with spins $S_1 = S_2$ and momentum J:

$$S_1 = S_2 = 1, J = 2 \rightarrow [0, 1, 2]_{(0,0)}, \Delta_0 = 6$$

 \bullet circular string with spins $S_1 = J_1$ and momentum J:

$$S_1 = J_1 = 1, J = 2 \rightarrow [1, 1, 1]_{(\frac{1}{2}, \frac{1}{2})}, \quad \Delta_0 = 6$$

Direct approaches to computation of quantum string energies: (not relying on integrability)

(not relying on integrability)
(i) vertex operator approach:
use $AdS_5 \times S^5$ string sigma model perturbation theory to find leading terms in 2d anomalous dimension of corresponding vertex operators and impose marginality condition
[Polyakov 01; AT 03; pure spinors: Mazzucato, Vallilo 11]
(ii) "light-cone" gauge approach:
start with AdS light-cone gauge $AdS_5 \times S^5$ string action and compute corrections to energy of corresponding flat-space oscillator string state [Metsaev, Thorn, AT 00]

both yet to be developed in detail; in practice, will be guided by vertex operator approach but use indirect but easier to implement "semiclassical" approach: "short string" limit of semiclassical expansion [Tirziu, AT 08; Roiban, AT 09, 11]

Target space perspective:

string in flat space: $p^2=m^2=\frac{2N}{\alpha'}$ e.g. leading Regge trajectory $(\partial x \bar{\partial} x)^{S/2} e^{ipx}$, N=S spectrum in (weakly) curved background: solve marginality (1,1) conditions on vertex operators

e.g. 2d anomalous dimension operator $\widehat{\gamma}$ on scalar T(x) differential operator in target space from β -function for the corresponding perturbation

$$I = \frac{1}{4\pi\alpha'} \int d^2z \Big[G_{mn}(x) \partial x^m \bar{\partial} x^n + T(x) \Big]$$

$$\beta_T = -2T - \frac{\alpha'}{2} \hat{\gamma} T + O(T^2)$$

$$\hat{\gamma} = \Omega^{mn} D_m D_n + \dots + \Omega^{m\dots k} D_m \dots D_k + \dots$$

$$\Omega^{mn} = G^{mn} + O(\alpha'^3), \qquad \Omega^{mn} \sim \alpha'^n R^p_{\dots}$$

Solving $-\widehat{\gamma} T + m^2 T = 0$ $(m^2 = -\frac{4}{\alpha'})$ same as diagonalizing $\widehat{\gamma}$

Massive string states in curved background:

$$\int d^{D}x \sqrt{g} \left[\Phi_{...}(-D^{2} + m^{2} + X)\Phi_{...} + ... \right]$$

$$m^{2} = \frac{2N}{\alpha'}, \qquad X = R_{...} + O(\alpha')$$

case of $AdS_5 \times S^5$ background

$$R_{mn} - \frac{1}{96}(F_5F_5)_{mn} = 0, \quad R = 0, \quad F_5^2 = 0$$

Find leading-order term in X ...

leading α' correction to scalar string state mass is 0 (?!)

$$[-D^2 + m^2 + O(\frac{1}{\sqrt{\lambda}})]\Phi = 0$$

$$\Delta = 2 + \sqrt{2N + 4 + O(\frac{1}{\sqrt{\lambda}})}$$

$$\Delta_{N=2} = 2 + 2\sqrt[4]{\lambda} \left[1 + \frac{1}{2\sqrt{\lambda}} + O(\frac{1}{(\sqrt{\lambda})^2})\right]$$

Too naive: various subtleties (10d scalar vs singlet state, mixing) What is found for non-singlet (susy descendant) Konishi states?

Vertex operator approach

calculate 2d anomalous dimensions from "first principles"–superstring theory in $AdS_5 \times S^5$:

$$I = \frac{\sqrt{\lambda}}{4\pi} \int d^2\sigma \Big[\partial Y_p \bar{\partial} Y^p + \partial X_k \bar{\partial} X_k + \text{fermions} \Big]$$

$$-Y_0^2 - Y_5^2 + Y_1^2 + \dots + Y_4^2 = -1 , \qquad X_1^2 + \dots + X_6^2 = 1$$

construct marginal (1,1) operators in terms of Y_p and X_k e.g. vertex operator for dilaton (in NSR framework)

$$V_J = (Y_+)^{-\Delta} (X_x)^J \left[\partial Y_p \bar{\partial} Y^p + \partial X_k \bar{\partial} X_k + \text{fermions} \right]$$

$$Y_{+} \equiv Y_{0} + iY_{5} = z + z^{-1}x_{m}x_{m} \sim e^{it}$$

$$X_x \equiv X_1 + iX_2 \sim e^{i\varphi}$$

$$2 = 2 + \frac{1}{2\sqrt{\lambda}} \left[\Delta(\Delta - 4) - J(J + 4) \right] + O(\frac{1}{(\sqrt{\lambda})^2})$$

i.e.
$$\Delta = 4 + J$$
 (BPS)

Vertex operators = eigenstates of 2d anomalous dimension matrix particular linear combinations like

$$V = f_{k_1...k_{\ell}m_1...m_{2s}} X_{k_1}...X_{k_{\ell}} \partial X_{m_1} \bar{\partial} X_{m_2}...\partial X_{m_{2s-1}} \bar{\partial} X_{m_{2s}}$$

their renormalization studied in O(n) sigma model [Wegner 90] simplest case: $f_{k_1...k_\ell}X_{k_1}...X_{k_\ell}$ with traceless $f_{k_1...k_\ell}$ highest-weight rep $V_J=(X_x)^J$, $\widehat{\gamma}=2-\frac{1}{2\sqrt{\lambda}}J(J+4)+...$

Higher massive states:

Flat space: bosonic string state on leading Regge trajectory

$$V_S = e^{-iEt} (\partial x \bar{\partial} x)^{S/2}, \quad x = x_1 + ix_2, \quad \alpha' E^2 = 2(S - 2)$$

 $AdS_5 \times S^5$: candidates for operators on leading Regge trajectory:

$$V_J = (Y_+)^{-\Delta} \left(\partial X_x \bar{\partial} X_x \right)^{J/2}, \qquad X_x \equiv X_1 + iX_2$$
$$V_S = (Y_+)^{-\Delta} \left(\partial Y_u \bar{\partial} Y_u \right)^{S/2}, \qquad Y_u \equiv Y_1 + iY_2$$

+ fermionic terms

+ $\alpha' \sim \frac{1}{\sqrt{\lambda}}$ terms from diagonalization of anom. dim. op.

- mixing with operators with same charges and dimension.

In general $(\partial X_x \bar{\partial} X_x)^{J/2}$ mixes with singlets

$$(X_x)^{2p+2q}(\partial X_x)^{\frac{1}{2}J'-2p}(\bar{\partial} X_x)^{\frac{1}{2}J'-2q}(\partial X_m\partial X_m)^p(\bar{\partial} X_k\partial X_k)^q$$

Example of higher-level scalar/singlet operator:

$$Y_{+}^{-\Delta} \left[(\partial X_k \bar{\partial} X_k)^r + \dots \right], \qquad N = 2(r-1)$$

Marginality condition:

[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

$$0 = 2(r-1) - \frac{1}{2\sqrt{\lambda}} \left[\Delta(\Delta - 4) + 2r(r-1) \right] - \frac{1}{(\sqrt{\lambda})^2} \left[\frac{2}{3} r(r-1)(r-\frac{7}{2}) + 4r \right] + \dots$$

r=1: ground level–fermions should make r=1 zero of $\widehat{\gamma}$

r=2: excited level – analog of singlet Konishi state $\Delta_0=2$

$$\Delta(\Delta - 4) = 4\sqrt{\lambda} - 4 + O(\frac{1}{\sqrt{\lambda}}),$$

$$\Delta - \Delta_0 = 2\sqrt[4]{\lambda} \left[1 + 0 \times \frac{1}{\sqrt{\lambda}} + O(\frac{1}{(\sqrt{\lambda})^2}) \right]$$

fermionic contributions change subleading coefficients

Bosonic operators with momentum J and spin $J_1 \equiv J'$ in S^5 :

$$V_{J,J'} = Y_{+}^{-\Delta} \sum_{k,m=0}^{J'/2} c_{km} M_{km}$$

$$M_{km} \equiv X_{y}^{J-k-m} X_{x}^{k+m} (\partial X_{y})^{k} (\partial X_{x})^{\frac{1}{2}J'-k} (\bar{\partial} X_{y})^{m} (\bar{\partial} X_{x})^{\frac{1}{2}J'-m}$$

highest and lowest eigen-values of 1-loop anom. dim. matrix

$$\widehat{\gamma}_{\min} = 2 - J' + \frac{1}{2\sqrt{\lambda}} \left[\Delta(\Delta - 4) - J(J + 4) - \frac{1}{2}J'(J' + 10) - 2JJ' \right] + \dots$$

$$\widehat{\gamma}_{\max} = 2 - J' + \frac{1}{2\sqrt{\lambda}} \left[\Delta(\Delta - 4) - J(J + 4) - \frac{1}{2}J'(J' + 6) \right] + \dots$$

fermionic contributions change terms linear in J'

How to take fermionic contributions into account?

- (i) compute energies of semiclassical string states in $\frac{1}{\sqrt{\lambda}}$ expansion using full $AdS_5 \times S^5$ Green-Schwarz action
- (ii) compare to structure of $E=\Delta$ expected from marginality condition
- (iii) determine unknown coefficients in $E(\sqrt{\lambda})$

General structure of dimension/energy $\Delta = E$

marginality condition – condition on quantum numbers Q_i

$$Q = (E(\lambda), S_1, S_2; J_1, J_2, J_3; ...); \quad N = \sum_i a_i Q_i = \text{level}$$

$$0 = 2N + \frac{1}{\sqrt{\lambda}} \left(\sum_{i,j} c_{ij} Q_i Q_j + \sum_i c_i Q_i \right)$$

$$+\frac{1}{(\sqrt{\lambda})^2} \Big(\sum_{i,j,k} c_{ijk} Q_i Q_j Q_k + \sum_{i,j} c'_{ij} Q_i Q_j + \sum_i c'_i Q_i \Big) + \dots$$

- highest power of Q at n-loop order $\frac{1}{(\sqrt{\lambda})^n}Q^{n+2}$
- dependence on "momenta" E and $J = J_3$ is special e.g., they do not enter N
- terms $\frac{1}{(\sqrt{\lambda})^n}E^m$ are scheme-dependent $(cf.(\alpha'D^2)^n$ terms in $\widehat{\gamma})$ choose susy-preserving scheme where E=J is the only solution in BPS case only E^2 terms are then left (ignore const shifts)
- terms $\frac{1}{(\sqrt{\lambda})^n}E^2Q^k$ can be traded for E-independent terms in perturbative solution for E

States on "leading Regge trajectory": (max spin for given E in flat limit) Q = (E, J; N), N= spin component marginality condition:

$$0 = 2N + \frac{1}{\sqrt{\lambda}} \left(-E^2 + J^2 + n_{02}N^2 + n_{11}N \right) + \frac{1}{(\sqrt{\lambda})^2} \left(n_{01}J^2N + n_{03}N^3 + n_{12}N^2 + n_{21}N \right) + O(\frac{1}{(\sqrt{\lambda})^3})$$

solution for E^2 takes form [Roiban, AT 09, 11; BGMRT 12]

$$E^{2} = 2\sqrt{\lambda}N + J^{2} + n_{02}N^{2} + n_{11}N + \frac{1}{\sqrt{\lambda}}(n_{01}J^{2}N + n_{03}N^{3} + n_{12}N^{2} + n_{21}N) + \frac{1}{(\sqrt{\lambda})^{2}}(\widetilde{n}_{11}J^{2}N + \widetilde{n}_{02}J^{2}N^{2} + n_{04}N^{4} + n_{13}N^{3} + n_{22}N^{2} + n_{31}N) + \frac{1}{(\sqrt{\lambda})^{3}}(\widetilde{n}_{01}J^{4}N + \widetilde{n}_{21}J^{2}N + \widetilde{n}_{12}J^{2}N^{2} + n_{05}N^{5} + ...) + O(\frac{1}{(\sqrt{\lambda})^{4}})$$

 $J^k N^m$ terms: non-decoupling of c.o.m.

Expanding in large $\sqrt{\lambda}$ for fixed N, J

$$E = \sqrt{2\sqrt{\lambda}N} \left[1 + \frac{A_1}{\sqrt{\lambda}} + \frac{A_2}{(\sqrt{\lambda})^2} + O(\frac{1}{(\sqrt{\lambda})^3}) \right]$$

$$A_1 = \frac{1}{4N}J^2 + \frac{1}{4}(n_{02}N + n_{11})$$

$$A_2 = -\frac{1}{2}A_1^2 + \frac{1}{4}(n_{01}J^2 + n_{03}N^2 + n_{12}N + n_{21})$$

Gives strong-coupling expansion of dimension of corresponding gauge-theory operator

States on 1-st excited superstring level: N=2Konishi multiplet states: N=2, J=2

$$E = \sqrt[4]{\lambda} \left[2 + \frac{b_1}{\sqrt{\lambda}} + \frac{b_2}{(\sqrt{\lambda})^2} + O(\frac{1}{(\sqrt{\lambda})^3}) \right]$$

$$b_1 = 1 + n_{02} + \frac{1}{2}n_{11}$$

$$b_2 = -4b_1^2 + 2n_{01} + 2n_{03} + n_{12} + \frac{1}{2}n_{21}$$

To find coefficients n_{km} use semiclassical "short string" (small spin) expansion:

- start with solitonic string carrying same charges as vertex operator representing particular quantum string state
- ullet perform semiclassical expansion: $\sqrt{\lambda}\gg 1$ for fixed classical parameters $(\mathcal{N},\mathcal{J})$

$$\mathcal{N} = \frac{1}{\sqrt{\lambda}}N, \quad \mathcal{J} = \frac{1}{\sqrt{\lambda}}J$$

- expand E in small values of \mathcal{N}, \mathcal{J}
- re-interpret the resulting E in terms of N, J and read off n_{km}

Key point: limit
$$\mathcal{N} = \frac{N}{\sqrt{\lambda}} \to 0$$
, $\mathcal{J} = \frac{J}{\sqrt{\lambda}} \to 0$ corresponds to $\sqrt{\lambda} \gg 1$ for fixed values of quantum charges N, J

Rewrite E^2 in terms of \mathcal{N}, \mathcal{J} :

$$(\frac{E}{\sqrt{\lambda}})^2 = (2\mathcal{N} + \mathcal{J}^2 + n_{01}\mathcal{J}^2\mathcal{N} + n_{02}\mathcal{N}^2 + n_{03}\mathcal{N}^3 + \widetilde{n}_{01}\mathcal{J}^4\mathcal{N} + \widetilde{n}_{02}\mathcal{J}^2\mathcal{N}^2 + ...)$$

$$+ \frac{1}{\sqrt{\lambda}}(n_{11}\mathcal{N} + \widetilde{n}_{11}\mathcal{J}^2\mathcal{N} + n_{12}\mathcal{N}^2 + \widetilde{n}_{12}\mathcal{J}^2\mathcal{N}^2 + n_{13}\mathcal{N}^3 + ...)$$

$$+ \frac{1}{(\sqrt{\lambda})^2}(n_{21}\mathcal{N} + \widetilde{n}_{21}\mathcal{J}^2\mathcal{N} + n_{22}\mathcal{N}^2 + ...) + O(\frac{1}{(\sqrt{\lambda})^3}),$$

- can now interpret n_{km} as semiclassical k-loop contribution to \mathcal{N}^m term in E: 1-st line is classical energy, 2nd is 1-loop, etc.
- ullet semiclassical loop expansion ($\sqrt{\lambda}\gg 1$ for fixed \mathcal{N},\mathcal{J}) different from first loop expansion —in 2d anomalous dimension—($\sqrt{\lambda}\gg 1$ for fixed N,J) but they contain same coefficients
- ullet each loop term in first expansion is polynomial in charges but in semiclassical expansion each term may contain infinite series in small \mathcal{J}, \mathcal{N} expansion

Semiclassical expansion of E^2 organized as expansion in small \mathcal{N} formally looks like series in powers of N:

$$E^2 = J^2 + h_1(\lambda, J) N + h_2(\lambda, J) N^2 + h_3(\lambda, J) N^3 + \dots$$

for fixed J and large λ

$$h_1 = 2\sqrt{\lambda} + n_{11} + \frac{n_{21}}{\sqrt{\lambda}} + \frac{n_{31}}{(\sqrt{\lambda})^2} + \dots + J^2 \left(\frac{n_{01}}{\sqrt{\lambda}} + \frac{\tilde{n}_{11}}{(\sqrt{\lambda})^2} + \dots \right) + \dots$$

$$h_2 = n_{02} + \frac{n_{12}}{\sqrt{\lambda}} + \dots, \qquad h_3 = \frac{n_{03}}{\sqrt{\lambda}} + \dots$$

exact result for "slope" h_1 for AdS_5 folded spinning string state (N=S) from Bethe Ansatz [Basso 11]

$$h_1(\lambda, J) = 2\sqrt{\lambda} \frac{d}{d\sqrt{\lambda}} \ln I_J(\sqrt{\lambda})$$

$$= 2\sqrt{\lambda} \sqrt{1 + J^2} - \frac{1}{1 + J^2} - \frac{\frac{1}{4} - J^2}{\sqrt{\lambda}(1 + J^2)^{5/2}} + \dots$$

$$= 2\sqrt{\lambda + J^2} - \frac{\lambda}{\lambda + J^2} - \frac{\lambda(\frac{1}{4}\lambda - J^2)}{(\lambda + J^2)^{5/2}} + \dots$$

[Can one find h_1 by direct summation of 4d or 2d Feynmann diagrams (or via localization)?]

But one needs to know also coefficients in $h_2, h_3, ...$ (much more non-trivial, depend on wrapping corrections)

Strategy: consider examples of "small" semiclassical string states corresponding to quantum string states with angular momentum J and few oscillator modes excited (carrying spin)

- start with classical string solutions in flat space representing states on leading Regge trajectory
- find the corresponding solutions in $AdS_5 \times S^5$
- find 1-loop correction to their E
- expand E in $\mathcal{N} = \frac{N}{\sqrt{\lambda}} \to 0$ interpolate result to finite N
- find the coefficients n_{km}
- \bullet check universality of E for N=2 (implied by susy)

Two basic classes of examples (N = spin, J = orbital momentum):

- circular string with 2 spins in two orthogonal planes
- folded string with spin in a plane

Rigid circular string rotating in two planes of \mathbb{R}^4

$$t = \kappa \tau$$
, $x_1 \equiv x_1 + ix_2 = a e^{i(\tau + \sigma)}$, $x_2 \equiv x_3 + ix_4 = a e^{i(\tau - \sigma)}$
 $E_{\text{flat}} = \frac{\kappa}{\alpha'} = \sqrt{\frac{2}{\alpha'}N}$, $N = J_1 + J_2$, $J_1 = J_2 = \frac{a^2}{\alpha'}$

semiclassical counterpart of quantum string state created by

$$e^{-iEt}\left[\left(\partial \mathbf{x}_1\bar{\partial}\mathbf{x}_1\right)^{\frac{J_1}{2}}\left(\partial \mathbf{x}_2\bar{\partial}\mathbf{x}_2\right)^{\frac{J_2}{2}}+\ldots\right]$$

Folded string rotating in a plane

$$t = \kappa \tau$$
, $x_1 \equiv x_1 + ix_2 = a \sin \sigma e^{i\tau}$
 $E_{\text{flat}} = \sqrt{\frac{2}{\alpha'}N}$, $N = S = \frac{a^2}{2\alpha'}$,

semiclassical counterpart of quantum string state

$$e^{-iEt} \left[(\partial \mathbf{x}_x \bar{\partial} \mathbf{x}_x)^{S/2} + \dots \right]$$

3 ways to embed circular solutions into $AdS_5 \times S^5$:

- (i) the two 2-planes in S^5 : $J_1 = J_2$ "small string"
- (ii) the two 2-planes in AdS_5 : $S_1 = S_2$ "small string"
- (iii) one plane in AdS_5 and the other in S^5 : S = J' "small string"

2 choices – AdS_5 or S^5 – for folded string

for N=2 all 5 cases represent states on 1st string level; for N=J=2 they are particular members of Konishi multiplet can be used to check universality of λ -dependent part of $\Delta=E$ for different states in supermultiplet Spins: S_1, S_2 in AdS_5 ; (J_1, J_2) in S^5 orbital momentum $J = J_3$ in S^5

Examples:

• folded string with spin S_1 and momentum J:

$$S_1 = J = 2 \rightarrow [0, 2, 0]_{(1,1)}, \quad \Delta_0 = 4$$

 \bullet folded string with spin J_1 and momentum J:

$$J_1 = J = 2 \rightarrow [2, 0, 2]_{(0,0)}, \quad \Delta_0 = 4$$

 \bullet circular string with spins $J_1 = J_2$ and momentum J:

$$J_1 = J_2 = 1, J = 2 \rightarrow [0, 1, 2]_{(0,0)}, \Delta_0 = 6$$

 \bullet circular string with spins $S_1 = S_2$ and momentum J:

$$S_1 = S_2 = 1, J = 2 \rightarrow [0, 1, 2]_{(0,0)}, \Delta_0 = 6$$

 \bullet circular string with spins $S_1 = J_1$ and momentum J:

$$S_1 = J_1 = 1, J = 2 \rightarrow [1, 1, 1]_{(\frac{1}{2}, \frac{1}{2})}, \quad \Delta_0 = 6$$

Results: for several states on leading Regge trajectory

$$E^{2} = 2\sqrt{\lambda}N + J^{2} + n_{02}N^{2} + n_{11}N + \frac{1}{\sqrt{\lambda}} \left(n_{01}J^{2}N + n_{03}N^{3} + n_{12}N^{2} + n_{21}N\right) + \frac{1}{(\sqrt{\lambda})^{2}} \left(\widetilde{n}_{11}J^{2}N + \widetilde{n}_{02}J^{2}N^{2} + n_{04}N^{4} + n_{13}N^{3} + n_{22}N^{2} + n_{31}N\right) + \frac{1}{(\sqrt{\lambda})^{3}} \left(\widetilde{n}_{01}J^{4}N + \widetilde{n}_{21}J^{2}N + \widetilde{n}_{12}J^{2}N^{2} + n_{05}N^{5} + ...\right) + O\left(\frac{1}{(\sqrt{\lambda})^{4}}\right)$$

• $n_{01}=1,\ \widetilde{n}_{01}=-\frac{1}{4},...$ from near-BMN expansion $(J\ll\sqrt{\lambda})$

$$E^2 = J^2 + 2N\sqrt{\lambda + J^2} + \dots = J^2 + N(2\sqrt{\lambda} + \frac{J^2}{\sqrt{\lambda}} + \dots)$$

- "tree-level" coeffs $n_{02}, n_{03}, n_{04}, \dots$ are all rational
- leading 1-loop n_{11} is rational [Roiban, AT 09; Gromov et al 11]
- $\widetilde{n}_{11} = -n_{11}$, i.e in general [BGMRT 12]

$$h_{1} = 2\sqrt{\lambda}\sqrt{1 + \mathcal{J}^{2}} + \frac{n_{11}}{1 + \mathcal{J}^{2}} + \frac{1}{\sqrt{\lambda}}\left[n_{21} + \tilde{n}_{21}\mathcal{J}^{2} + O(\mathcal{J}^{4})\right] + O(\frac{1}{(\sqrt{\lambda})^{2}})$$

$$h_{2} = \frac{n_{02} + \mathcal{J}^{2}}{1 + \mathcal{J}^{2}} + \frac{1}{\sqrt{\lambda}}\left[n_{12} + \tilde{n}_{12}\mathcal{J}^{2} + O(\mathcal{J}^{4})\right] + O(\frac{1}{(\sqrt{\lambda})^{2}})$$

• $n_{12} = n'_{12} - 3\zeta_3$, $n'_{12} = -\frac{3}{8} - 2n_{03}$ is rational [Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11] ζ_3 term is universal for states on leading Regge trajectory

- $\tilde{n}_{12} = \tilde{n}'_{12} + 3\zeta_3 + \frac{15}{4}\zeta_5$, \tilde{n}'_{12} rational
- n_{1k} contains universal ζ_{2k-1} (universal UV $n \gg 1$ asymptotics) e.g. $n_{13} = \tilde{n}'_{12} + \tilde{n}''_{1k}\zeta_3 + \frac{15}{4}\zeta_5$
- leading 2-loop coefficient n_{21} is universal: $n_{21} = -\frac{1}{4}$ for folded string state [Basso]; evidence from universality [BGMRT] of the Konishi state energy (J = N = 2)

$$E_{N=J=2} = \sqrt[4]{\lambda} \left[2 + \frac{b_1}{\sqrt{\lambda}} + \frac{b_2}{(\sqrt{\lambda})^2} + \frac{b_3}{(\sqrt{\lambda})^3} + \dots \right]$$

$$b_1 = 1 + n_{02} + \frac{1}{2}n_{11} = 2$$

$$b_2 = -\frac{1}{4}b_1^2 + 2n_{01} + 2n_{03} + n_{12} + \frac{1}{2}n_{21} = \frac{1}{2} - 3\zeta_3$$

$$b_3 = a_1 + a_2\zeta_3 + \frac{15}{2}\zeta_5 , \dots$$

 b_1, b_2 : match TBA predictions interpolated to $\lambda \gg 1$

• need 2-loop string sigma model computation to confirm universality of n_{21} , fix $n_{22} \rightarrow$ determine b_3

Some details:

• Circular rotating string in S^5 with $J_1 = J_2 \equiv J'$: flat space $R_t \times R^4$: circular string solution

$$x_1 + ix_2 = a e^{i(\tau + \sigma)}, \quad x_3 + ix_4 = a e^{i(\tau - \sigma)}$$

$$E = \sqrt{\frac{4}{\alpha'}J'}, \quad J' = \frac{a^2}{\alpha'}$$

directly embedded into $R_t \times S^5$ in $AdS_5 \times S^5$ [Frolov, AT 03]: string on small sphere inside S^5 : $X_1^2 + ... + X_6^2 = 1$

$$X_1 + iX_2 = a e^{i(\tau + \sigma)}, \quad X_3 + iX_4 = a e^{i(\tau - \sigma)},$$

 $X_5 + iX_6 = \sqrt{1 - 2a^2}, \quad t = \kappa \tau$
 $\mathcal{J}' = \mathcal{J}_1 = \mathcal{J}_2 = a^2, \quad \mathcal{E}_0^2 = \kappa^2 = 4\mathcal{J}'$

 E_0 is just as in flat space

$$E_0 = \sqrt{\lambda} \mathcal{E} = \sqrt{4\sqrt{\lambda} J'}, \qquad J' = \sqrt{\lambda} \mathcal{J}'$$

1-loop correction to energy: closed string $(R \times S^1)$

sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)

Bosons (2 massless + massive):

$$AdS_5: 4 \times \omega_n^2 = n^2 + 4\mathcal{J}'$$

 $S^5: 2 \times \omega_{n\pm}^2 = n^2 + 4(1 - \mathcal{J}') \pm 2\sqrt{4(1 - \mathcal{J}')n^2 + 4\mathcal{J}'^2}$

Fermions:

$$4 \times \omega_{n\pm}^{2f} = n^2 + 1 + \mathcal{J}' \pm \sqrt{4(1 - \mathcal{J}')n^2 + 4\mathcal{J}'}$$

$$E_{1} = \frac{1}{2\kappa} \sum_{n=-\infty}^{\infty} \left[4\omega_{n} + 2(\omega_{n+} + \omega_{n-}) - 4(\omega_{n+}^{f} + \omega_{n-}^{f}) \right]$$

expand in small \mathcal{J}' and do sums $(\zeta_k \text{ come from } \sum_n)$

$$E_1 = \frac{1}{\sqrt{J'}} \left[J' - (3 + \zeta_3) J'^2 - \frac{1}{4} (5 + 6\zeta_3 + 30\zeta_5) J'^3 + \dots \right]$$

$$E = E_0 + E_1 = 2\sqrt{\sqrt{\lambda}J'} \left[1 + \frac{1}{2\sqrt{\lambda}} - \frac{3}{4}(1 + 2\zeta_3) \frac{J'}{(\sqrt{\lambda})^2} + \dots \right]$$

To get a state on the first excited string level (N=2J') should choose J'=1, i.e. $J_1=J_2=1$ for minimal non-trivial value of $J=J_3=2$ there is unique corresponding state in Konishi multiplet table: $[0,1,2]_{(0,0)}$ at level $\Delta_0=6$ and thus

$$b_1 = 2\left(\frac{J^2}{8J'} + \frac{1}{2}\right)_{J=2,J'=1} = 2$$

• Small circular spinning string with $S_1 = S_2$ rigid circular string with two equal spins in AdS^5 and orbital momentum $J = J_3$ in S^5

$$Y_0 + iY_5 = \sqrt{1 + 2r^2} e^{i\kappa t}$$
, $Y_1 + iY_2 = r e^{i(w\tau + \sigma)}$, $Y_3 + iY_4 = r e^{i(w\tau - \sigma)}$
 $X_5 + iX_6 = e^{i\nu\tau}$, $w^2 = \kappa^2 + 1$, $\kappa^2(1 + 2r^2) = 2r^2(1 + w^2) + \nu^2$

$$\mathcal{E}_0 = (1+2r^2)\kappa = \kappa + \frac{2\kappa\mathcal{S}}{\sqrt{1+\kappa^2}}, \qquad \mathcal{S} = \mathcal{S}_1 = \mathcal{S}_2 = r^2w, \quad \mathcal{J} = \nu$$

"short" string expansion of the classical energy

$$E_0 = \sqrt{\lambda} \mathcal{E}_0$$
, $\mathcal{E}_0 = 2\sqrt{\mathcal{S}} \left(1 + \mathcal{S} + \frac{\mathcal{J}^2}{8\mathcal{S}} + \ldots \right)$

including 1-loop correction:

$$E_0 + E_1 = 2\sqrt{\sqrt{\lambda}S} \left[1 + \frac{1}{\sqrt{\lambda}} \left(S + \frac{J^2}{8S} - \frac{1}{2} \right) + \mathcal{O}(\frac{1}{(\sqrt{\lambda})^2}) \right]$$

state on the first excited level (N=2S)has two excited oscillators, i.e. should have $S=S_1=S_2=1$ for J=2 the dual state in representation $[0,2,0]_{(1,0)}$ there is just one state in Konishi table with $\Delta_0=6$

$$b_1 = 2\left(S + \frac{J^2}{8S} - \frac{1}{2}\right)_{S=1, J=2} = 2$$

• Small circular spinning string with $S=J_1$ and $J=J_2\neq 0$ rigid circular solution with one spin in AdS_5 and one spin in S^5 and orbital momentum J in S^5

$$Y_{0} + iY_{5} = \sqrt{1 + r^{2}} e^{i\kappa t}, \quad Y_{1} + iY_{2} = r e^{i(w\tau + \sigma)}, \quad w^{2} = \kappa^{2} + 1,$$

$$X_{1} + iX_{2} = a e^{i(w'\tau - \sigma)}, \quad X_{3} + iX_{4} = \sqrt{1 - a^{2}} e^{i\nu\tau}, \quad w'^{2} = \nu^{2} + 1,$$

$$\mathcal{E}_{0} = 2\sqrt{\mathcal{S}} \left(1 + \frac{1}{2}\mathcal{S} + \frac{\mathcal{J}^{2}}{8\mathcal{S}} + \ldots \right)$$

The leading 1-loop correction to the energy vanishes (cancellation of AdS and sphere contributions)

$$E_0 + E_1 = 2\sqrt{\sqrt{\lambda}S} \left[1 + \frac{1}{\sqrt{\lambda}} \left(\frac{1}{2}S + \frac{J_2^2}{8S} \right) + \mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^2} \right) \right]$$

state on the first excited level: $S=J_1=1$ for J=2 get state $[1,1,1]_{(\frac{1}{2},\frac{1}{2})}$ at $\Delta_0=6$ level

$$b_1 = 2\left(\frac{1}{2}S + \frac{J^2}{8S}\right)_{S=1, J=2} = 2$$

Conclusions

- beginning of understanding of $AdS_5 \times S^5$ string spectrum
- = spectrum of conformal $\mathcal{N}=4$ SYM operators
- agreement with numerical results from TBA: non-trivial check of quantum integrability
- prediction of transcendental structure of leading coefficients: reproduce them by an analytic solution of TBA at strong coupling?
- evidence of universality of some coefficients in strong coupling expansion of dimensions of states on leading Regge trajectory
- ullet need systematic study of quantum string theory in $AdS_5 imes S^5$ in near-flat-space expansion

and of course we still need first-principles solution for the spectrum of $AdS_5 \times S^5$ superstring = spectrum of $\mathcal{N}=4$ SYM based on integrability

it is now appearing to be within reach